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Abstract 
Games are inherently situated within the cultures of their 
players.  Players bring a wide range of knowledge and expec-
tations to a game, and the more the game suggests connec-
tions to that culture, the stronger those expectations are 
and/or the more problematic they can be.  MKULTRA is an 
experimental, AI-heavy game that ran afoul of those issues.  
It’s interesting to hear a talk about or to see demonstrated by 
the author, but frustrating for players who do not already un-
derstand its internals in some detail. 
  In this paper, I will give a postmortem of the game, in the 
rough style of industry postmortems from venues such as Ga-
masutra or GDC.  I will discuss the goals and design of the 
game, what went right, what went wrong, and what I should 
have done instead.  In my discussions of the game’s prob-
lems, I’ll focus on the ways in which it frustrated the players’ 
cultural expectations, and what we can learn from them for 
the design of future games. 

 Introduction   
MKULTRA is an experimental, AI-heavy game intended to 
explore novel, AI-centered game mechanics (I. Horswill, 
2014b, 2014a).  Roughly speaking, it consists of a 1980s-
style Prolog natural language system (Pereira & Shieber, 
1987; Pereira & Warren, 1980; David H. D. Warren & 
Pereira, 1982), combined with a 1990s-style reactive plan-
ner (McDermott, 1978; Sibun, 1992), running in a 
RPGMaker-style tile-based world.  The agents in the game 
– the player, the player character, and the NPCs – can all 
interact using generative natural language dialog, including 
questions, imperatives, and declaratives, within a restricted 
grammar of English and a lexicon of a few hundred words.  
 The game was envisioned as a mystery where the player 
was cast in the role of Betsy, a detective with psionic abili-
ties.  The mystery narrative provided an impetus for natural 
language interaction – the player must talk to characters to 
collect information – and the psionic abilities afforded a 
number of novel gameplay mechanics, most notably belief 
injection (see below). 
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 Development proceeded as far as a playable demo with 
fully implement character AI and drama management.  
However, even the demo has proven very difficult for naïve 
users to play.  The problem is not that the puzzles are too 
hard, but that learning the limits of the system is too hard.   
 A succession of tutorial mechanisms were added to the 
game: autocompletion, hinting mechanisms, active prod-
ding from NPCs, and finally, pop-up menus to suggest 
promising actions to the player.  But none were sufficient to 
allow any of the 30 or so playtesters to complete the demo 
level without help.  As a result, development of the game 
has been suspended pending a fundamental redesign of the 
gameplay. 
 In this paper, I will discuss the development of the game 
in the style of a game industry postmortem: goals, technol-
ogy, what went right, what went wrong, and what I should 
have done instead.  The intent here is not to document spe-
cific technical innovations, since those have been written 
about elsewhere.  It is rather to talk about why those inno-
vations were insufficient, and how we can apply those les-
sons to future games. 
 Much of the failure of the system involves the cultural 
expectations players brought to the game, and the game’s 
inability to fulfill them.  These failures were twofold: the 
game’s characters suggested a deeper understanding of hu-
man culture than they actually possessed, and the game’s 
similarities to existing genres misled players to expect dif-
ferent kinds of gameplay than the game was able to support. 

Goals 
The game’s original goal was to build a next-generation in-
teractive narrative in the tradition of Mateas and Stern’s Fa-
çade (Mateas & Stern, 2005).  Periodic attempts by the game 
AI research community to build full-fledged games are im-
portant.  And while there has been a great deal of work on 
interactive narrative since Façade (see, for example (Evans 
& Short, 2014; I. D. Horswill, Montfort, & Young, 2014; 
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Roberts & Isbell, 2008; Robertson & Young, 2015), the only 
recent attempt to build a similarly complete, AI-heavy inter-
active narrative piece has been Evan’s and Short’s Versu 
platform (Evans & Short, 2013), which did not come from 
the research community. 
 The primary technical goal was to integrate simple but 
generative natural language with true semantic parsing into 
an AI-based interactive narrative.  Façade did something 
closer to categorization of utterances than the production of 
true logical forms (Mateas & Stern, 2004); the system could 
understand that you were agreeing with a character or that 
you had insulted them.  But if you asked a character a ques-
tion, the system literally couldn’t represent the content of 
the specific question. 
 Finally, the project had a set of game design goals; it was 
an exercise in AI-based game design (Eladhari, Sullivan, 
Smith, & Mccoy, 2011).  The central design problem it 
sought to solve was to design gameplay that was robust with 
respect to the AI system’s failure modes.  Any practical 
character AI system will have limited knowledge, vocabu-
lary, reasoning abilities, and so on.  The project sought to 
design the mechanics and the narrative of the game so as to 
compensate for those limitations (I. Horswill, 2014b). 
 One example of this was the belief injection mechanic.  
The player can manipulate an NPC’s behavior by injecting 
false beliefs directly into its knowledge base.  This is a fun 
puzzle mechanic: how do you figure out the character’s cur-
rent belief structure, so you can change it to accomplish your 
goal?   It’s also a narrative alibi for the character’s inevitable 
failures of planning, inference, and social norms; the char-
acter can be forgiven for doing stupid things because it’s a 
mind-controlled zombie.  Put another way, by making AI 
debugging a form of gameplay, we reduce the intrusiveness 
of the AI’s fragility.  The player sees it as a failure of their 
own problem solving rather than as a bug in the game itself. 
 Another example was the surfacing of the AI’s limitations 
in the user interface.  MKULTRA’s vocabulary is several 
hundred words, not the tens of thousands of a fluent speaker.  
Teaching the player what the system can and cannot under-
stand is difficult.  So the system scaffolds the player’s learn-
ing using a novel autocomplete mechanism (I. Horswill, 
2014a).  The system uses a reversible parser/generator that 
allows it to take a partial user inputs as they are typed, solve 
for its possible completions within the subset of English the 
system understands, and display those completions in real 
time, introducing the player to examples of sentences it un-
derstands.  If there are no possible completions, the system 
knows the player has typed an invalid input and gives them 
immediate feedback rather than letting them continue typing 
a bad command. 

Gameplay 
The core gameplay is similar to classic parser-based inter-
active fiction (Jackson-Mead & Wheeler, 2011).  By typing 
commands in English, the player explores the world, gath-
ering information, poking systems to understand how they 
work, and ultimately solving puzzles.  Unlike parser-based 
IF, the systems being poked are autonomous, AI-driven 
NPCs running a simple NL system and reactive planner. 
 All characters, including the player character (PC), go 
about pursuing their own limited goals in the absence of 
player intervention.  The player intervenes by typing sen-
tences in the UI; these “thoughts” are injected into the player 
character.  They can be requests, questions, assertions, re-
sponses to questions, or variations such as indirect requests.  
If the player character is in conversation with an NPC, the 
sentences are spoken by the player character to the NPC.  
Otherwise, they are taken as being addressed to the player 
character.  Characters, including the PC, can refuse requests 
or lie in response to questions.  The only exception is belief 
injection, which characters cannot refuse. 
 The fundamental mechanics of the game are therefore 
questions, requests, and belief injection.  These mechanics 
are then used to gather information and solve puzzles. 

Technology 
MKULTRA runs under the Unity3D game engine (Unity 
Technologies, 2004).  The game is free, open-source soft-
ware available on github. 
 The AI system is written primarily in a custom-built 
Prolog interpreter.  The Prolog interpreter also implements 
Evans’ eremic logic (Evans, 2010; Evans & Short, 2014), 
which provides a separate, tree-structured knowledge-base 
that has better update semantics than Prolog’s assert/retract 
interface. 
 The major components of the AI system consists of: 
 
• A reversible, semantic parser/generator based on def-

inite-clause grammars (Pereira & Shieber, 1987; 
Pereira & Warren, 1980).  It handles single-clause 
English sentences without quantifiers, in a variety of 
grammatical moods, tenses, and aspects. 

• A committed-choice reactive planner inspired in part 
by the SALIX system (Sibun, 1992). 

• A dialog system that can respond speech acts involv-
ing questions, answers, assertions, and imperatives.  
It is essentially an elaborate version of CHAT-80 
(David H. D. Warren & Pereira, 1982). 

• A simple ternary logic programming system reason-
ing about the knowledge states of characters to help 
them reason about the distinction between not know-
ing a fact and knowing the fact to be false.  
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• A lying system to allow characters to reason about 
whether they should answer a question truthfully. 

• A limited moral reasoning system (Blass & Horswill, 
2015) based on defeasible Prolog (Nute, 1993). 

• A beat-sequencing system, similar to that of Façade 
(Mateas & Stern, 2002) 

• An elaborate context-dependent hinting system to 
suggest player actions based on the world state, nar-
rative state and the knowledge states of the characters 

 
In addition, the game contains a large number of UI technol-
ogies to help on-board the player: 
 
• The incremental parsing/autocompletion system dis-

cussed above. 
• All objects in the world support pop-up menus show-

ing possible interactions with the object in question.  
Menu entries can be nominated by the object, the cur-
rent narrative beat, or specialized knowledge about 
the player character’s goals. 

• Menu entries take the form of equivalent sentences 
the player could type through the dialog menu, giving 
the player further examples of the kinds of sentences 
the system understands. 

Demo level 
Although the character AI and beat sequencing systems 
were implemented, only a demo level was constructed be-
cause of the playability problems with the game. 
 In the demo level, the player plays Betsy, a psionic spy 
whose has had her maguffin stolen by her friend Kavi, who 
is also a spy, but who works for Betsy’s opponents, the illu-
minati.  Betsy needs to find and recover her macguffin with-
out being exposed and killed by Kavi. 
 The level begins with Kavi welcoming Besty and telling 
her to make herself at home, but warning her to stay out of 
the bedroom.  Kavi then wanders off to the kitchen.  The 
player can now explore the house or talk further to Kavi.   
 Searching can be achieved by telling Betsy to examine 
specific objects, or just by giving her broader directions such 
as search the bedroom, or even search the house.  If the 
player searches the bedroom, they will find the macguffin, 
but Kavi will come and kill her. 
 The player can talk to Kavi by saying talk to Kavi, ask 
Kavi to bring me the macguffin, ask Kavi if he’s a member 
of the illuminati, etc.  If Betsy isn’t already in a conversation 
with Kavi, she’ll walk over to him and begin a conversation.  
Kavi will deny any knowledge of the illuminati or the mac-
guffin and will attempt to kill Betsy if she finds the macguf-
fin. 
 Solving the level requires disabling Kavi in some way.  
There are a number of ways of doing this, including: 
 
• Brainwashing Kavi to believe Betsy is a member of 

the illuminati, and therefore allowed access to the 
macguffin.  Kavi will then even deliver the macguf-
fin if asked to do so. 

• Brainwashing Kavi to believe Betsy is an inanimate 
object and therefore not a threat. 

• Brainwashing Kavi to believe that he is hungry and 
that he is himself food.  Kavi then fatally eats him-
self. 

• Telling Betsy to put Kavi in the refrigerator.  Because 
of a bug, Kavi gets stuck in the refrigerator (he 
doesn’t realize he needs to leave it before trying to 
walk elsewhere).  This is a sufficiently amusing bug 
that it was left in. 

 
MKULTRA was playtested at a number of venues (AIIDE, 
EXAG, Indie City Meetup), and less formally at North-
western University and GDC, for a total of around 30 
playtesters.  In addition, its codebase was used in two un-
dergraduate classes.  No player ever succeeded in com-
pleting the demo level without help.  

Figure 1: MKULTRA demo level 
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What Went Right 
Although unsuccessful as a game, there were aspects of 
MKULTRA that worked very well. 
Technology 
The Unity Prolog interpreter built for MKULTRA, which is 
open source and distributed on github, was an unexpected 
success.  It has been used for a half dozen projects in the US, 
South America, the Caribbean, and Europe.  It was also used 
in a successful commercial game, Project Highrise 
(Viglione & Zubek, 2016).  In general, Prolog was a very 
useful language for AI prototyping.  It allowed high pro-
grammer productivity while being sufficiently performant 
for the needs of the game. 
 Definite clause grammars (Pereira & Warren, 1980) 
worked well for the kinds of limited vocabularies and gram-
mars being used in the game.  The ability to embed arbitrary 
Prolog code in the productions was useful, as it allowed the 
parser to call out to the game engine for resolving certain 
kinds of NP references.  And although DCGs are a back-
tracking, recursive descent parsing technology, their perfor-
mance was sufficient for the game. 
 Evans’ eremic logic (Evans, 2010) was also very useful 
for maintaining both the AI’s state and for communicating 
with the underlying game engine.  Without its ability to de-
lete or replace large chunks of state with a single operation, 
the game would almost certainly have had large numbers of 
bugs related to incomplete state cleanup. 
 Reactive planning was sufficient for the simple tasks the 
characters had to solve in the game.  There were few cases 
where the kinds of simulation-based lookahead that a full 
planning system (Ghallab, Nau, & Traverso, 2004) provides 
would have been useful.  That said, there were cases where 
discourse planning would have been simpler if there had 
been some limited lookahead capability. 
Gameplay 
Even though the NL and planning capabilities of the charac-
ters were primitive by modern standards, they added suffi-
cient autonomy to the characters to make them interesting 
systems to poke.  They were sufficiently reliable and perfor-
mant to demonstrate the practicality of allowing the player 
to task NPCs in a simple, generative language. 
 Players enjoyed being able to type search the house and 
have the character know what to do; it’s far less tedious than 
manually piloting the character from one location to an-
other.  Similarly, it’s nice to be able to walk up to an NPC 
and say “can I have an apple?” and have them go to the 
kitchen, open the refrigerator, extract an apple, walk back to 
you, and give it to you.  It would be interesting to explore 
the use of this kind of interaction for sidekick/companion 
characters. 
 It is also (often) entertaining to watch the system behave 
strangely.  There is considerable humor value in telling a 

character to eat himself or to put another character in the 
refrigerator. 

What Went Wrong 
The game confused players.  Even though the system would 
explicitly prompt players to type, players were often unsure 
how to interact with the system and would simply stare at 
the screen. 
Negative Transfer from Existing Genres 
One issue was that the game has sufficient superficial simi-
larities to existing genres that players would repeatedly try 
to deploy the conventions of those genres.  Players would, 
for example, type “n” for “north” rather than “go to the 
kitchen,” since that’s a widely adopted convention of parser-
based text adventures.  Others would attempt to pilot the 
player character using the arrow keys, as if it were a typical 
tile-based RPG. 
 Many players expected the puzzles to be in the environ-
ment rather than in the NPCs.  They would ignore Kavi in 
favor searching for trap doors or hidden safe combinations.  
Many players missed that they’d been given an objective 
and blindly explored the environment, not being sure what 
to look for. 
Expectation Violation 
The biggest problem players had was determining what ac-
tions were available to them.  The natural language interface 
presents the appearance of open-ended interaction, and does 
deliver it in a limited sense.  But it only understands a small 
fragment of English.  Players spent nearly all their time try-
ing to guess what sentences it would accept.  While the au-
tocompletion interface helped, it was better at telling them 
an input was invalid that what valid input to use instead. 
 Players also had an analogous problem with understand-
ing the boundaries of the AI’s knowledge of the world.  Kavi 
is not an actual intelligent creature.  He’s a clockwork mech-
anism that understands two things: 
 

• Only admit to knowledge of the macguffin or the 
illuminati to members of the illuminati 

• Kill any people who go into the bedroom unless 
they’re members of the illuminati   

  
This means he can be circumvented by convincing him 
Betsy is a member of the illuminati, is not person, or is 
somewhere other than the bedroom. 
 Unfortunately, Kavi behaves just enough like an intelli-
gent creature that players overattribute knowledge to him.  
They tried to threaten, bribe, trick, flatter, or seduce him, or 
otherwise compromise him in any number of ways about 
which the system had exactly zero understanding.  The 
player can easily waste large amounts of time trying to guess 
what verb to use to threaten Kavi, when the system literally 

48



doesn’t know what a threat is.  Even though Kavi’s AI is 
considerably more sophisticated than ELIZA (Wiezenbaum, 
1966), it nevertheless falls prey to the ELIZA effect 
(Wardrip-Fruin, 2012). 
 This relates to the final issue, which we might call the 
non-systematicity of knowledge.  If a word is used during 
the game, the player naturally assumes the system has gen-
eral knowledge about it.  For example, the fact that there is 
furniture in the demo level will cause players use commands 
such as look under the sofa.  But while the game understands 
that the object occupying that pair of tiles is a “sofa” and 
sofas are a kind of container you can sit and lie on, it doesn’t 
understand that there is normally space underneath one of 
them where something could be lost or hidden.  Again, the 
player can waste large amounts of time trying to find ways 
of looking underneath the sofa or between its cushions, even 
though the game doesn’t know what a cushion is.  This is in 
some ways like Wardrip-Fruin’s TaleSpin Effect (2012), 
wherein an AI system appears more simple-minded than it 
actually is.  However, in this case, the system truly is simple-
minded about furniture. 
 Similarly, the characters know some things about the 
CIA, e.g. that it’s a government agency, but not any of its 
historical or cultural legacy.  You can’t ask characters about 
the CIA’s role in the cold war, because they don’t know 
what communism is; it isn’t relevant to the plot.  Unfortu-
nately, players don’t know it’s irrelevant. 
 This issue is particularly problematic when it comes to 
scripted dialog, which can be spoken by an NPC when a nar-
rative beat deems it necessary.  Such dialog often contains 
words, idioms, or grammatical constructions the system 
doesn’t understand at all. 

Failure and Cultural Context 
Games are always situated within a cultural context.  That 
context provides the background for the game’s intelligibil-
ity to the player.  Well-designed games are matched to this 
context so as to leverage player expectations and under-
standing.  This issue of cultural alignment is a useful lens 
for analyzing MKULTRA’s problems.  
Game culture 
Part of the cultural context is the specific culture of games.  
While different players have different levels of familiarity 
with a given genre or with games in general, most players 
come to a game with background knowledge of at least some 
of the tropes and mechanics of common game genres.  
 Consider the different kinds of role-playing game genres.  
Most players of parser-based interactive fiction have con-
siderable experience with the genre and come to the game 
with the expectation that the game will implement the stand-
ard verbs and sentence structure of parser-based IF unless 
there is a clear good reason not to.  These conventions did 

not come about overnight or at random; they were developed 
over a period of decades through explicit discussion 
amongst authors and players (Jackson-Mead & Wheeler, 
2011; Nelson, 1995).  Parser-based IF players are also more 
likely to view a certain amount of trial and error as being 
part of the puzzle, and hence the pleasure, of the game. 
 Compare these to computer RPGs, such as the Final Fan-
tasy series.  These take the explicitly pedagogical approach 
that has become standard in video game level design: the 
game is taught during the first few levels or scenarios, each 
of which teaches the player about a small set of new capa-
bilities.  If the game has a manual at all, it is largely limited 
to listing key or button bindings. 
 By contrast, table-top RPGs literally are their manuals.  
TTRPG players are expected to invest time reading and 
learning about the game before they ever start playing.  And 
game masters are expected to invest hours or days. 
General human culture 
In addition to their specific game knowledge, players bring 
all the general knowledge they share with other members of 
their culture: their language, their beliefs about social and 
gender norms, their understanding of cooking and television 
and politics.  When we interact with people we use that 
knowledge to interpret and predict their actions, and assume 
they share and use it too. 
 The characters in MKULTRA present themselves as mem-
bers of some approximation to contemporary culture, or to 
be accurate, North American, white, middle class, English-
speaking culture.  They have commonsense knowledge 
about space, containers, and so on.  They lie.  They under-
stand social norms such as excusing oneself when leaving, 
and ethical norms such as it being inappropriate to eat other 
people. 
 Unfortunately, even players who aren’t a part of this cul-
ture know more about it than any present-day AI system 
could possibly know.  They bring a wide range of cultural 
expectations that the system cannot possibly live up to.  
Players repeatedly bump up against these limits of the char-
acter’s background understanding. 
What made it a problematic game 
MKULTRA is a kind of perfect storm of cultural misunder-
standings.  The game looks like a tile-based RPG, creating  
false expectations of what character and environmental in-
teraction should be like.  It also looks like parser-based IF, 
creating a different set of false expectations.  Plus, unlike 
either of them, it has autonomous characters and generative 
natural language, setting up a third set of expectations it 
can’t possibly fulfill. 
 These would be less of a problem if MKULTRA were 
purely a puzzle game.  We could restrict the sentences the 
characters say to stay well clear of the boundaries of its un-
derstanding.  We could foreground the limited, and mechan-
ical nature of their understanding, making the characters 
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into a game system for the players to reason about in the 
same way they’d reason about game economies.  We could 
adopt classical, pedagogical level design, having each suc-
cessive level explicitly introduce a few words of vocabulary.  
The player would never wonder what the game’s subset of 
English was because it would have been explicitly taught to 
them. 
 However, these kinds of interventions are incompatible 
with the game’s original goal of immersive interactive nar-
rative.  It doesn’t work to tell the player they’re role-playing 
a detective using generative natural language, but then say 
“this is level one; you can use these five words.”  For inter-
active narrative, a choice-based interface, where the player 
is explicitly presented with the options that are viable in the 
immediate circumstances would work much better than the 
generative-but-limited NLU of MKULTRA. 
 This, I think, is the single biggest problem with the game: 
it needed either to be a Façade-like interactive narrative that 
encouraged players to willfully suspend disbelief, or it 
needed to commit fully to being a puzzle game that encour-
aged the player to think of the characters not as humans but 
as dumb AI systems to be reverse-engineered by the player.  
Trying to do both created a dilemma in which the more suc-
cessful it was at one, the less successful it was at the other.  
The semantic parsing that produced interesting puzzle 
gameplay actively impeded narrative immersion, and was in 
turn, actively impeded by the game design constraints intro-
duced by the narrative aspects of the game. 
 To be clear, many games, including point and click ad-
ventures from Myst (Miller & Miller, 1993) onward, suc-
cessfully combine puzzles and narrative.  Typically, the puz-
zles form the gameplay, and the advancing of the narrative 
forms a part of the reward for solving the puzzle.1  MKUL-
TRA’s problems stem from an unsuccessful attempt to use 
generative natural language for both these elements at once. 

Conclusion 
As AI researchers, we tend to think of character AI as a set 
of distinct technical capabilities.  But when the player plays 
the game, they experience the characters as an overall ge-
stalt.  One aspect of the gestalt is a continuum between what 
we might call clockwork characters, in which the mechani-
cal nature of the underlying AI is foregrounded in the 
player’s mind, and (for want of a better term) lifelike char-
acters, in which the player is less conscious of the charac-
ter’s mechanical nature.  This continuum is highly sensitive 
to both gameplay design and AI capabilities and robustness. 
 Gameplay that treats characters as puzzles to be solved 
emphasizes the mechanical nature of characters.  The player 
must understand the AI in detail and think of it as a puzzle.  

                                                 
1 Although see (Montfort, 2005) for a much more sophisticated analysis. 

The player can repeatedly play through the same sequence 
of actions and responses without losing the illusion of life 
because there was little illusion to begin with. 
 By contrast, lifelike characters are better for narrative im-
mersion, at least insofar as the narrative is about the charac-
ters.  The illusion of life is delicate, however. 
 Many of MKULTRA’s problems stem from unsuccess-
fully trying to make characters that are simultaneously 
clockwork and lifelike.  These problems suggest some gen-
eral design lessons for each type. 
 Clockwork characters must be as legible as possible to the 
player.  Players must be able to predict character behavior 
well enough to accomplish their goals in the game.  It must 
be easy for the player to learn character behavior, and any 
relevant internal state must be readily apparent to the player.  
The more rules and state underlying the character’s behav-
ior, the longer it will take the player to learn and master 
them.  If the gameplay requires the player to reliably predict 
character behavior, then this learning time effectively limits 
the allowable complexity of character behavior. 
 Predictability is less important for lifelike characters than 
the need not to be overtly confusing or stupid.  Their behav-
ior can be complex and even unpredictable, so long as it is 
narratively appropriate.  Characters need reasonable default 
behaviors to perform when they encounter unanticipated sit-
uations.  For example, in Façade, characters generally 
grunted or entirely ignored inputs they didn’t understand 
and continued performing their current beats.  While subop-
timal, this is preferable to an endless cycle of “I’m sorry; I 
didn’t understand that, could you repeat it?”  It’s often pref-
erable for a character to default to a less intelligent, or less 
specific, response to a situation than to risk an inappropriate 
behavior that breaks the illusion of life. 
 The clockwork/lifelike spectrum is only one aspect of the 
player’s experience of character AI.  MKULTRA’s problems 
stemmed in part from trying to be both at once, which placed 
competing pressures on both gameplay and technology.  At 
the same time, it raised a set of cultural expectations in the 
player that it couldn’t ultimately fulfill.  While still interest-
ing and engaging to see demonstrated, a truly successful ver-
sion of the game will require a gameplay redesign that re-
solves these issues. 
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