

Postmortem: MKULTRA, An Experimental AI-Based Game

Ian Douglas Horswill
Northwestern University, Evanston IL, USA

ian@northwestern.edu

Abstract
Games are inherently situated within the cultures of their
players. Players bring a wide range of knowledge and expec-
tations to a game, and the more the game suggests connec-
tions to that culture, the stronger those expectations are
and/or the more problematic they can be. MKULTRA is an
experimental, AI-heavy game that ran afoul of those issues.
It’s interesting to hear a talk about or to see demonstrated by
the author, but frustrating for players who do not already un-
derstand its internals in some detail.
 In this paper, I will give a postmortem of the game, in the
rough style of industry postmortems from venues such as Ga-
masutra or GDC. I will discuss the goals and design of the
game, what went right, what went wrong, and what I should
have done instead. In my discussions of the game’s prob-
lems, I’ll focus on the ways in which it frustrated the players’
cultural expectations, and what we can learn from them for
the design of future games.

 Introduction
MKULTRA is an experimental, AI-heavy game intended to
explore novel, AI-centered game mechanics (I. Horswill,
2014b, 2014a). Roughly speaking, it consists of a 1980s-
style Prolog natural language system (Pereira & Shieber,
1987; Pereira & Warren, 1980; David H. D. Warren &
Pereira, 1982), combined with a 1990s-style reactive plan-
ner (McDermott, 1978; Sibun, 1992), running in a
RPGMaker-style tile-based world. The agents in the game
– the player, the player character, and the NPCs – can all
interact using generative natural language dialog, including
questions, imperatives, and declaratives, within a restricted
grammar of English and a lexicon of a few hundred words.
 The game was envisioned as a mystery where the player
was cast in the role of Betsy, a detective with psionic abili-
ties. The mystery narrative provided an impetus for natural
language interaction – the player must talk to characters to
collect information – and the psionic abilities afforded a
number of novel gameplay mechanics, most notably belief
injection (see below).

Copyright © 2018, Association for the Advancement of Artificial Intelli-
gence (www.aaai.org). All rights reserved.

 Development proceeded as far as a playable demo with
fully implement character AI and drama management.
However, even the demo has proven very difficult for naïve
users to play. The problem is not that the puzzles are too
hard, but that learning the limits of the system is too hard.
 A succession of tutorial mechanisms were added to the
game: autocompletion, hinting mechanisms, active prod-
ding from NPCs, and finally, pop-up menus to suggest
promising actions to the player. But none were sufficient to
allow any of the 30 or so playtesters to complete the demo
level without help. As a result, development of the game
has been suspended pending a fundamental redesign of the
gameplay.
 In this paper, I will discuss the development of the game
in the style of a game industry postmortem: goals, technol-
ogy, what went right, what went wrong, and what I should
have done instead. The intent here is not to document spe-
cific technical innovations, since those have been written
about elsewhere. It is rather to talk about why those inno-
vations were insufficient, and how we can apply those les-
sons to future games.
 Much of the failure of the system involves the cultural
expectations players brought to the game, and the game’s
inability to fulfill them. These failures were twofold: the
game’s characters suggested a deeper understanding of hu-
man culture than they actually possessed, and the game’s
similarities to existing genres misled players to expect dif-
ferent kinds of gameplay than the game was able to support.

Goals
The game’s original goal was to build a next-generation in-
teractive narrative in the tradition of Mateas and Stern’s Fa-
çade (Mateas & Stern, 2005). Periodic attempts by the game
AI research community to build full-fledged games are im-
portant. And while there has been a great deal of work on
interactive narrative since Façade (see, for example (Evans
& Short, 2014; I. D. Horswill, Montfort, & Young, 2014;

Proceedings of the Fourteenth Artificial Intelligence and
Interactive Digital Entertainment Conference (AIIDE 2018)

45

Roberts & Isbell, 2008; Robertson & Young, 2015), the only
recent attempt to build a similarly complete, AI-heavy inter-
active narrative piece has been Evan’s and Short’s Versu
platform (Evans & Short, 2013), which did not come from
the research community.
 The primary technical goal was to integrate simple but
generative natural language with true semantic parsing into
an AI-based interactive narrative. Façade did something
closer to categorization of utterances than the production of
true logical forms (Mateas & Stern, 2004); the system could
understand that you were agreeing with a character or that
you had insulted them. But if you asked a character a ques-
tion, the system literally couldn’t represent the content of
the specific question.
 Finally, the project had a set of game design goals; it was
an exercise in AI-based game design (Eladhari, Sullivan,
Smith, & Mccoy, 2011). The central design problem it
sought to solve was to design gameplay that was robust with
respect to the AI system’s failure modes. Any practical
character AI system will have limited knowledge, vocabu-
lary, reasoning abilities, and so on. The project sought to
design the mechanics and the narrative of the game so as to
compensate for those limitations (I. Horswill, 2014b).
 One example of this was the belief injection mechanic.
The player can manipulate an NPC’s behavior by injecting
false beliefs directly into its knowledge base. This is a fun
puzzle mechanic: how do you figure out the character’s cur-
rent belief structure, so you can change it to accomplish your
goal? It’s also a narrative alibi for the character’s inevitable
failures of planning, inference, and social norms; the char-
acter can be forgiven for doing stupid things because it’s a
mind-controlled zombie. Put another way, by making AI
debugging a form of gameplay, we reduce the intrusiveness
of the AI’s fragility. The player sees it as a failure of their
own problem solving rather than as a bug in the game itself.
 Another example was the surfacing of the AI’s limitations
in the user interface. MKULTRA’s vocabulary is several
hundred words, not the tens of thousands of a fluent speaker.
Teaching the player what the system can and cannot under-
stand is difficult. So the system scaffolds the player’s learn-
ing using a novel autocomplete mechanism (I. Horswill,
2014a). The system uses a reversible parser/generator that
allows it to take a partial user inputs as they are typed, solve
for its possible completions within the subset of English the
system understands, and display those completions in real
time, introducing the player to examples of sentences it un-
derstands. If there are no possible completions, the system
knows the player has typed an invalid input and gives them
immediate feedback rather than letting them continue typing
a bad command.

Gameplay
The core gameplay is similar to classic parser-based inter-
active fiction (Jackson-Mead & Wheeler, 2011). By typing
commands in English, the player explores the world, gath-
ering information, poking systems to understand how they
work, and ultimately solving puzzles. Unlike parser-based
IF, the systems being poked are autonomous, AI-driven
NPCs running a simple NL system and reactive planner.
 All characters, including the player character (PC), go
about pursuing their own limited goals in the absence of
player intervention. The player intervenes by typing sen-
tences in the UI; these “thoughts” are injected into the player
character. They can be requests, questions, assertions, re-
sponses to questions, or variations such as indirect requests.
If the player character is in conversation with an NPC, the
sentences are spoken by the player character to the NPC.
Otherwise, they are taken as being addressed to the player
character. Characters, including the PC, can refuse requests
or lie in response to questions. The only exception is belief
injection, which characters cannot refuse.
 The fundamental mechanics of the game are therefore
questions, requests, and belief injection. These mechanics
are then used to gather information and solve puzzles.

Technology
MKULTRA runs under the Unity3D game engine (Unity
Technologies, 2004). The game is free, open-source soft-
ware available on github.
 The AI system is written primarily in a custom-built
Prolog interpreter. The Prolog interpreter also implements
Evans’ eremic logic (Evans, 2010; Evans & Short, 2014),
which provides a separate, tree-structured knowledge-base
that has better update semantics than Prolog’s assert/retract
interface.
 The major components of the AI system consists of:

• A reversible, semantic parser/generator based on def-

inite-clause grammars (Pereira & Shieber, 1987;
Pereira & Warren, 1980). It handles single-clause
English sentences without quantifiers, in a variety of
grammatical moods, tenses, and aspects.

• A committed-choice reactive planner inspired in part
by the SALIX system (Sibun, 1992).

• A dialog system that can respond speech acts involv-
ing questions, answers, assertions, and imperatives.
It is essentially an elaborate version of CHAT-80
(David H. D. Warren & Pereira, 1982).

• A simple ternary logic programming system reason-
ing about the knowledge states of characters to help
them reason about the distinction between not know-
ing a fact and knowing the fact to be false.

46

• A lying system to allow characters to reason about
whether they should answer a question truthfully.

• A limited moral reasoning system (Blass & Horswill,
2015) based on defeasible Prolog (Nute, 1993).

• A beat-sequencing system, similar to that of Façade
(Mateas & Stern, 2002)

• An elaborate context-dependent hinting system to
suggest player actions based on the world state, nar-
rative state and the knowledge states of the characters

In addition, the game contains a large number of UI technol-
ogies to help on-board the player:

• The incremental parsing/autocompletion system dis-

cussed above.
• All objects in the world support pop-up menus show-

ing possible interactions with the object in question.
Menu entries can be nominated by the object, the cur-
rent narrative beat, or specialized knowledge about
the player character’s goals.

• Menu entries take the form of equivalent sentences
the player could type through the dialog menu, giving
the player further examples of the kinds of sentences
the system understands.

Demo level
Although the character AI and beat sequencing systems
were implemented, only a demo level was constructed be-
cause of the playability problems with the game.
 In the demo level, the player plays Betsy, a psionic spy
whose has had her maguffin stolen by her friend Kavi, who
is also a spy, but who works for Betsy’s opponents, the illu-
minati. Betsy needs to find and recover her macguffin with-
out being exposed and killed by Kavi.
 The level begins with Kavi welcoming Besty and telling
her to make herself at home, but warning her to stay out of
the bedroom. Kavi then wanders off to the kitchen. The
player can now explore the house or talk further to Kavi.
 Searching can be achieved by telling Betsy to examine
specific objects, or just by giving her broader directions such
as search the bedroom, or even search the house. If the
player searches the bedroom, they will find the macguffin,
but Kavi will come and kill her.
 The player can talk to Kavi by saying talk to Kavi, ask
Kavi to bring me the macguffin, ask Kavi if he’s a member
of the illuminati, etc. If Betsy isn’t already in a conversation
with Kavi, she’ll walk over to him and begin a conversation.
Kavi will deny any knowledge of the illuminati or the mac-
guffin and will attempt to kill Betsy if she finds the macguf-
fin.
 Solving the level requires disabling Kavi in some way.
There are a number of ways of doing this, including:

• Brainwashing Kavi to believe Betsy is a member of

the illuminati, and therefore allowed access to the
macguffin. Kavi will then even deliver the macguf-
fin if asked to do so.

• Brainwashing Kavi to believe Betsy is an inanimate
object and therefore not a threat.

• Brainwashing Kavi to believe that he is hungry and
that he is himself food. Kavi then fatally eats him-
self.

• Telling Betsy to put Kavi in the refrigerator. Because
of a bug, Kavi gets stuck in the refrigerator (he
doesn’t realize he needs to leave it before trying to
walk elsewhere). This is a sufficiently amusing bug
that it was left in.

MKULTRA was playtested at a number of venues (AIIDE,
EXAG, Indie City Meetup), and less formally at North-
western University and GDC, for a total of around 30
playtesters. In addition, its codebase was used in two un-
dergraduate classes. No player ever succeeded in com-
pleting the demo level without help.

Figure 1: MKULTRA demo level

47

What Went Right
Although unsuccessful as a game, there were aspects of
MKULTRA that worked very well.
Technology
The Unity Prolog interpreter built for MKULTRA, which is
open source and distributed on github, was an unexpected
success. It has been used for a half dozen projects in the US,
South America, the Caribbean, and Europe. It was also used
in a successful commercial game, Project Highrise
(Viglione & Zubek, 2016). In general, Prolog was a very
useful language for AI prototyping. It allowed high pro-
grammer productivity while being sufficiently performant
for the needs of the game.
 Definite clause grammars (Pereira & Warren, 1980)
worked well for the kinds of limited vocabularies and gram-
mars being used in the game. The ability to embed arbitrary
Prolog code in the productions was useful, as it allowed the
parser to call out to the game engine for resolving certain
kinds of NP references. And although DCGs are a back-
tracking, recursive descent parsing technology, their perfor-
mance was sufficient for the game.
 Evans’ eremic logic (Evans, 2010) was also very useful
for maintaining both the AI’s state and for communicating
with the underlying game engine. Without its ability to de-
lete or replace large chunks of state with a single operation,
the game would almost certainly have had large numbers of
bugs related to incomplete state cleanup.
 Reactive planning was sufficient for the simple tasks the
characters had to solve in the game. There were few cases
where the kinds of simulation-based lookahead that a full
planning system (Ghallab, Nau, & Traverso, 2004) provides
would have been useful. That said, there were cases where
discourse planning would have been simpler if there had
been some limited lookahead capability.
Gameplay
Even though the NL and planning capabilities of the charac-
ters were primitive by modern standards, they added suffi-
cient autonomy to the characters to make them interesting
systems to poke. They were sufficiently reliable and perfor-
mant to demonstrate the practicality of allowing the player
to task NPCs in a simple, generative language.
 Players enjoyed being able to type search the house and
have the character know what to do; it’s far less tedious than
manually piloting the character from one location to an-
other. Similarly, it’s nice to be able to walk up to an NPC
and say “can I have an apple?” and have them go to the
kitchen, open the refrigerator, extract an apple, walk back to
you, and give it to you. It would be interesting to explore
the use of this kind of interaction for sidekick/companion
characters.
 It is also (often) entertaining to watch the system behave
strangely. There is considerable humor value in telling a

character to eat himself or to put another character in the
refrigerator.

What Went Wrong
The game confused players. Even though the system would
explicitly prompt players to type, players were often unsure
how to interact with the system and would simply stare at
the screen.
Negative Transfer from Existing Genres
One issue was that the game has sufficient superficial simi-
larities to existing genres that players would repeatedly try
to deploy the conventions of those genres. Players would,
for example, type “n” for “north” rather than “go to the
kitchen,” since that’s a widely adopted convention of parser-
based text adventures. Others would attempt to pilot the
player character using the arrow keys, as if it were a typical
tile-based RPG.
 Many players expected the puzzles to be in the environ-
ment rather than in the NPCs. They would ignore Kavi in
favor searching for trap doors or hidden safe combinations.
Many players missed that they’d been given an objective
and blindly explored the environment, not being sure what
to look for.
Expectation Violation
The biggest problem players had was determining what ac-
tions were available to them. The natural language interface
presents the appearance of open-ended interaction, and does
deliver it in a limited sense. But it only understands a small
fragment of English. Players spent nearly all their time try-
ing to guess what sentences it would accept. While the au-
tocompletion interface helped, it was better at telling them
an input was invalid that what valid input to use instead.
 Players also had an analogous problem with understand-
ing the boundaries of the AI’s knowledge of the world. Kavi
is not an actual intelligent creature. He’s a clockwork mech-
anism that understands two things:

• Only admit to knowledge of the macguffin or the
illuminati to members of the illuminati

• Kill any people who go into the bedroom unless
they’re members of the illuminati

This means he can be circumvented by convincing him
Betsy is a member of the illuminati, is not person, or is
somewhere other than the bedroom.
 Unfortunately, Kavi behaves just enough like an intelli-
gent creature that players overattribute knowledge to him.
They tried to threaten, bribe, trick, flatter, or seduce him, or
otherwise compromise him in any number of ways about
which the system had exactly zero understanding. The
player can easily waste large amounts of time trying to guess
what verb to use to threaten Kavi, when the system literally

48

doesn’t know what a threat is. Even though Kavi’s AI is
considerably more sophisticated than ELIZA (Wiezenbaum,
1966), it nevertheless falls prey to the ELIZA effect
(Wardrip-Fruin, 2012).
 This relates to the final issue, which we might call the
non-systematicity of knowledge. If a word is used during
the game, the player naturally assumes the system has gen-
eral knowledge about it. For example, the fact that there is
furniture in the demo level will cause players use commands
such as look under the sofa. But while the game understands
that the object occupying that pair of tiles is a “sofa” and
sofas are a kind of container you can sit and lie on, it doesn’t
understand that there is normally space underneath one of
them where something could be lost or hidden. Again, the
player can waste large amounts of time trying to find ways
of looking underneath the sofa or between its cushions, even
though the game doesn’t know what a cushion is. This is in
some ways like Wardrip-Fruin’s TaleSpin Effect (2012),
wherein an AI system appears more simple-minded than it
actually is. However, in this case, the system truly is simple-
minded about furniture.
 Similarly, the characters know some things about the
CIA, e.g. that it’s a government agency, but not any of its
historical or cultural legacy. You can’t ask characters about
the CIA’s role in the cold war, because they don’t know
what communism is; it isn’t relevant to the plot. Unfortu-
nately, players don’t know it’s irrelevant.
 This issue is particularly problematic when it comes to
scripted dialog, which can be spoken by an NPC when a nar-
rative beat deems it necessary. Such dialog often contains
words, idioms, or grammatical constructions the system
doesn’t understand at all.

Failure and Cultural Context
Games are always situated within a cultural context. That
context provides the background for the game’s intelligibil-
ity to the player. Well-designed games are matched to this
context so as to leverage player expectations and under-
standing. This issue of cultural alignment is a useful lens
for analyzing MKULTRA’s problems.
Game culture
Part of the cultural context is the specific culture of games.
While different players have different levels of familiarity
with a given genre or with games in general, most players
come to a game with background knowledge of at least some
of the tropes and mechanics of common game genres.
 Consider the different kinds of role-playing game genres.
Most players of parser-based interactive fiction have con-
siderable experience with the genre and come to the game
with the expectation that the game will implement the stand-
ard verbs and sentence structure of parser-based IF unless
there is a clear good reason not to. These conventions did

not come about overnight or at random; they were developed
over a period of decades through explicit discussion
amongst authors and players (Jackson-Mead & Wheeler,
2011; Nelson, 1995). Parser-based IF players are also more
likely to view a certain amount of trial and error as being
part of the puzzle, and hence the pleasure, of the game.
 Compare these to computer RPGs, such as the Final Fan-
tasy series. These take the explicitly pedagogical approach
that has become standard in video game level design: the
game is taught during the first few levels or scenarios, each
of which teaches the player about a small set of new capa-
bilities. If the game has a manual at all, it is largely limited
to listing key or button bindings.
 By contrast, table-top RPGs literally are their manuals.
TTRPG players are expected to invest time reading and
learning about the game before they ever start playing. And
game masters are expected to invest hours or days.
General human culture
In addition to their specific game knowledge, players bring
all the general knowledge they share with other members of
their culture: their language, their beliefs about social and
gender norms, their understanding of cooking and television
and politics. When we interact with people we use that
knowledge to interpret and predict their actions, and assume
they share and use it too.
 The characters in MKULTRA present themselves as mem-
bers of some approximation to contemporary culture, or to
be accurate, North American, white, middle class, English-
speaking culture. They have commonsense knowledge
about space, containers, and so on. They lie. They under-
stand social norms such as excusing oneself when leaving,
and ethical norms such as it being inappropriate to eat other
people.
 Unfortunately, even players who aren’t a part of this cul-
ture know more about it than any present-day AI system
could possibly know. They bring a wide range of cultural
expectations that the system cannot possibly live up to.
Players repeatedly bump up against these limits of the char-
acter’s background understanding.
What made it a problematic game
MKULTRA is a kind of perfect storm of cultural misunder-
standings. The game looks like a tile-based RPG, creating
false expectations of what character and environmental in-
teraction should be like. It also looks like parser-based IF,
creating a different set of false expectations. Plus, unlike
either of them, it has autonomous characters and generative
natural language, setting up a third set of expectations it
can’t possibly fulfill.
 These would be less of a problem if MKULTRA were
purely a puzzle game. We could restrict the sentences the
characters say to stay well clear of the boundaries of its un-
derstanding. We could foreground the limited, and mechan-
ical nature of their understanding, making the characters

49

into a game system for the players to reason about in the
same way they’d reason about game economies. We could
adopt classical, pedagogical level design, having each suc-
cessive level explicitly introduce a few words of vocabulary.
The player would never wonder what the game’s subset of
English was because it would have been explicitly taught to
them.
 However, these kinds of interventions are incompatible
with the game’s original goal of immersive interactive nar-
rative. It doesn’t work to tell the player they’re role-playing
a detective using generative natural language, but then say
“this is level one; you can use these five words.” For inter-
active narrative, a choice-based interface, where the player
is explicitly presented with the options that are viable in the
immediate circumstances would work much better than the
generative-but-limited NLU of MKULTRA.
 This, I think, is the single biggest problem with the game:
it needed either to be a Façade-like interactive narrative that
encouraged players to willfully suspend disbelief, or it
needed to commit fully to being a puzzle game that encour-
aged the player to think of the characters not as humans but
as dumb AI systems to be reverse-engineered by the player.
Trying to do both created a dilemma in which the more suc-
cessful it was at one, the less successful it was at the other.
The semantic parsing that produced interesting puzzle
gameplay actively impeded narrative immersion, and was in
turn, actively impeded by the game design constraints intro-
duced by the narrative aspects of the game.
 To be clear, many games, including point and click ad-
ventures from Myst (Miller & Miller, 1993) onward, suc-
cessfully combine puzzles and narrative. Typically, the puz-
zles form the gameplay, and the advancing of the narrative
forms a part of the reward for solving the puzzle.1 MKUL-
TRA’s problems stem from an unsuccessful attempt to use
generative natural language for both these elements at once.

Conclusion
As AI researchers, we tend to think of character AI as a set
of distinct technical capabilities. But when the player plays
the game, they experience the characters as an overall ge-
stalt. One aspect of the gestalt is a continuum between what
we might call clockwork characters, in which the mechani-
cal nature of the underlying AI is foregrounded in the
player’s mind, and (for want of a better term) lifelike char-
acters, in which the player is less conscious of the charac-
ter’s mechanical nature. This continuum is highly sensitive
to both gameplay design and AI capabilities and robustness.
 Gameplay that treats characters as puzzles to be solved
emphasizes the mechanical nature of characters. The player
must understand the AI in detail and think of it as a puzzle.

1 Although see (Montfort, 2005) for a much more sophisticated analysis.

The player can repeatedly play through the same sequence
of actions and responses without losing the illusion of life
because there was little illusion to begin with.
 By contrast, lifelike characters are better for narrative im-
mersion, at least insofar as the narrative is about the charac-
ters. The illusion of life is delicate, however.
 Many of MKULTRA’s problems stem from unsuccess-
fully trying to make characters that are simultaneously
clockwork and lifelike. These problems suggest some gen-
eral design lessons for each type.
 Clockwork characters must be as legible as possible to the
player. Players must be able to predict character behavior
well enough to accomplish their goals in the game. It must
be easy for the player to learn character behavior, and any
relevant internal state must be readily apparent to the player.
The more rules and state underlying the character’s behav-
ior, the longer it will take the player to learn and master
them. If the gameplay requires the player to reliably predict
character behavior, then this learning time effectively limits
the allowable complexity of character behavior.
 Predictability is less important for lifelike characters than
the need not to be overtly confusing or stupid. Their behav-
ior can be complex and even unpredictable, so long as it is
narratively appropriate. Characters need reasonable default
behaviors to perform when they encounter unanticipated sit-
uations. For example, in Façade, characters generally
grunted or entirely ignored inputs they didn’t understand
and continued performing their current beats. While subop-
timal, this is preferable to an endless cycle of “I’m sorry; I
didn’t understand that, could you repeat it?” It’s often pref-
erable for a character to default to a less intelligent, or less
specific, response to a situation than to risk an inappropriate
behavior that breaks the illusion of life.
 The clockwork/lifelike spectrum is only one aspect of the
player’s experience of character AI. MKULTRA’s problems
stemmed in part from trying to be both at once, which placed
competing pressures on both gameplay and technology. At
the same time, it raised a set of cultural expectations in the
player that it couldn’t ultimately fulfill. While still interest-
ing and engaging to see demonstrated, a truly successful ver-
sion of the game will require a gameplay redesign that re-
solves these issues.

Acknowledgements
I’d like to thank Ethan Robison, Rob Zubek, Robin Hunicke,
James Ryan, Michael Mateas, Richard Evans, all the various
playtesters, and the students of the various courses that used
MKULTRA for their kind advice and feedback. I’d also like
to thank the reviewers for their insightful comments. They
helped improve this document considerably.

50

References
Blass, J., & Horswill, I. (2015). Implementing Injunctive Social
Norms using Defeasible Reasoning. In Workshop on Social
Believability, Proceedings of the Eleventh AAAI Conference on
Artificial Intelligence and Interactive Digital Entertainment. Santa
Cruz, California.
Eladhari, M. P. E. Al, Sullivan, A., Smith, G., & Mccoy, J. (2011).
AI-Based Game Design : Enabling New Playable Experiences.
Technical Report, UCSC-SOE-11.
Evans, R. (2010). Introducing Exclusion Logic as a Deontic Logic.
In Deontic Logic in Computer Science, Proceedings of the 10th
International Conference, DEON 2010, Lecture Notes in
Computer Science Volume 6181 (pp. 179–195). Fiesole, Italy:
Springer.
Evans, R., & Short, E. (2013). Versu. San Francisco, CA: Linden
Lab.
Evans, R., & Short, E. (2014). Versu - A Simulationist Storytelling
System. IEEE Transactions on Computational Intelligence and AI
in Games, 6(2), 113–130.
Ghallab, M., Nau, D., & Traverso, P. (2004). Automated Planning:
Theory & Practice. Morgan Kaufman.
Horswill, I. (2014a). Architectural issues for compositional dialog
in games. In AAAI Workshop - Technical Report (Vol. WS-14-17).
Horswill, I. (2014b). Game design for classical AI. In AAAI
Workshop - Technical Report (Vol. WS-14-16).
Horswill, I. D., Montfort, N., & Young, R. M. (2014). Guest
editorial: Computational narrative and games. IEEE Transactions
on Computational Intelligence and AI in Games, 6(2).
Jackson-Mead, K., & Wheeler, J. R. (Eds.). (2011). IF Theory
Reader. Boston, MA: > Transcript On Press.
Mateas, M., & Stern, A. (2002). A Behavior Language for Story-
Based Agents. IEEE Intelligent Systems, 17(4), 39–47.
Mateas, M., & Stern, A. (2004). Natural Language Understanding
in Façade: Surface-text Processing. In Technologies for Interactive
Digital Storytelling and Entertainment (TIDSE). Darmstadt,
Germany.
Mateas, M., & Stern, A. (2005). Façade.
McDermott, D. (1978). Planning and acting. Cognitive Science,
2(2), 71–100.
Miller, R., & Miller, R. (1993). Myst. Cyan, Inc.
Montfort, N. (2005). Twisty Little Passages: An Approach to
Interactive Fiction. Cambridge, MA, USA: MIT Press.
Nelson, G. (1995). The Craft of Adventure. Retrieved from
http://mirror.ifarchive.org/if-archive/info/Craft.Of.Adventure.pdf
Nute, D. (1993). Defeasible prolog. AAAI Fall Symposium on
Automated Deduction in Nonstandard Logics, 105–112.
Pereira, F. C. N., & Shieber, S. (1987). Prolog and Natural
Language Analysis. Brookline, MA: Microtome Publishing.
Pereira, F. C. N., & Warren, D. H. D. (1980). Definite Clause
Grammars for Language Analysis - A Survey of the Formalism and
a Comparison with Augmented Transition Networks. Artificial
Intelligence, 13(231–278).
Roberts, D. L., & Isbell, C. L. (2008). A survey and qualitative
analysis of recent advances in drama management. International
Transactions on Systems Science and Applications, 4(1), 61–75.
Robertson, J., & Young, R. M. (2015). Interactive Narrative
Intervention Alibis through Domain Revision. AIIDE.

Sibun, P. (1992). Locally Organized Text Generation. University
of Massachusetts, Amherst.
Unity Technologies. (2004). Unity 3D. San Francisco, CA.
Viglione, M., & Zubek, R. (2016). Project Highrise. Chicago:
SomaSim, LLC.
Wardrip-Fruin, N. (2012). Expressive Processing: Digital
Fictions, Computer Games, and Software Studies. Cambridge,
MA: MIT Press.
Warren, D. H. D., & Pereira, F. C. N. (1982). An efficient easily
adaptable system for interpreting natural language queries.
Computational Linguistics, 8(3–4), 110–122.
Warren, D. H. D., Pereira, L. M., & Pereira, F. (1977). PROLOG -
The Language and its implementation compared with LISP. In
Symposium on AI and Programming Languages (Vol. 12, pp. 109–
115). ACM.
Wiezenbaum, J. (1966). ELIZA. Communications of the ACM, 9,
36–45.

51

	Abstract
	What Went Wrong
	Failure and Cultural Context
	Conclusion
	Acknowledgements
	References

