

Generative Text using Classical Nondeterminism

Ian Horswill
Northwestern University, Evanston IL, USA

ian@northwestern.edu

Abstract
Many recent generative text systems combine a context-free
grammar base with some set of extensions such as tagging or
inline JavaScript. We argue that the restriction to CFGs is
unnecessary and that the standard pattern-directed, nondeter-
ministic control structures common to Prolog, definite-clause
grammars, and many HTNs, support a superset of these ca-
pabilities while still being simple to implement. We describe
Step, a generative text system for Unity games based on
higher-order HTNs that so far as we can determine from pub-
lished descriptions, generalizes this previous work. We then
describe syntactic extensions to make Step more natural as a
text-authoring language. Finally, we discuss how Step and
similar systems can be implemented very compactly in mod-
ern mainstream programming languages.

Introduction

Most interactive fiction systems, and many video games, use
generative text subsystems to dynamically generate dialog
and narration. A number of generative text systems have
been published in the game AI and IF literatures (Compton,
et al. 2014; Evans and Short 2014; Garbe et al. 2019;
Horswill 2014, 2016; Mawhorter 2016; Montfort 2007;
Nelson 2006; Reed et al. 2011; Ryan, et al. 2016).
 Although a few of these systems implement full natural
language generation pipelines transforming symbolic repre-
sentations into text, most start from human-authored text
and adapt it to context, for example by variable substitution.
 These latter systems are the focus of this paper. All im-
plement some generalization of context-free grammars.
They can be placed in a rough computational hierarchy, in
which each system is a proper superset of those before it:

1. The simplest systems, template substitution sys-
tems, are less powerful than CFGs. They take a
string and substitute the values of variables at spec-
ified positions.

2. When a template is allowed to recursively substi-
tute the value of other templates, and alternative

Copyright © 2020 for this paper by its author. Use permitted under Creative
Commons License Attribution 4.0 International (CC BY 4.0).

versions of templates can be specified, we have a
context-free grammar.

3. When templates can take arguments and/or return
values, we have something closer to Knuth’s at-
tribute grammars (Aho and Ullman 1977).

4. When the grammar allows equality constraints on
those arguments, the result is a definite-clause
grammar (Pereira and Shieber 1987; Pereira and
Warren 1980), or some other unification grammar.

5. When the generator can pass state information
from early parts of the sentence to later ones, the
result is a first-order, SHOP-style, hierarchical task
network (HTN) planner (Nau et al. 1999).

6. When templates can take other templates as argu-
ments, one then has a higher-order HTN planner.

 Most published systems are types 1-3. However, types 4-
6 are more general and are all easily implemented using the
nondeterministic, pattern-directed, control structure of
Prolog (Clocksin and Mellish 2003) and its siblings. Indeed,
Prolog was initially invented for natural language pro-
cessing, and definite-clause grammars are implemented as a
Prolog macro. The original SHOP paper (Nau et al. 1999)
discusses its similarity to Prolog. SHOP can also be imple-
mented as a Prolog macro.
 Unfortunately, the literature on implementing nondeter-
ministic programming languages has few entry points for
non-specialists. The Prolog implementation literature from
the 80s and 90s (Roy 1993) focuses on complex, high per-
formance systems, using the notoriously opaque Warren
Abstract Machine (Ait-Kaci 1991; Warren 1983). The more
modern literature from the PL community (Friedman et al.
2018) focuses on using functional programming languages
with tail-call optimization and first-class continuations.
 Perhaps as a result, many of the text generators in the re-
search literature lack backtracking, equational constraints
(unification), or higher-order operators. This paper has 3
goals:

 To argue that nondeterministic programming is the
appropriate internal representation for CFG-like text
generators, regardless of what designer-facing GUI
or syntactic sugar is used to aid the authoring process.

 To present Step, a text generation language based on
higher-order HTNs, which manages to hide much of
the Prolog-ishness of the underlying representation
from the author.

 To describe how to implement such systems suc-
cinctly using in modern, mainstream programming
languages.

Step: a Simple Text Planner

Step is a nondeterministic language for writing text genera-
tors. It can be used for anything from Tracery-style context-
free grammars, to very general systems that dynamically in-
flect nouns and verbs to reflect different cases, voices,
tenses, genders, etc. It is written in C# and can be used as a
drop-in DLL for Unity projects.
 Following Ingold (Ingold 2015), our goal is for the bulk
of the text in a script to look like English text with occa-
sional markup, rather than like programming language code
with occasional bits of English text. For example:

Describe ?who:
 The ?who/Role, ?who, is a ?who/Age+Gender
 with ?who/SalientDetail. ?who regards you
 intently.
[end]

This might expand into text such as:

 The bartender, Olivia Strok, is a 40-something
woman with blue eyes. She regards you intently.

 The bartender, Jeff Craig, is an elderly man with
crooked teeth. He regards you intently.

This is syntactic sugar for a more overtly code-like form
where bracketed expressions represent subroutine calls:

Describe ?who:
 The [Role ?who], [Mention ?who], is a
 [Age ?who] [Gender ?who] with
 [SalientDetail ?who]. [Mention ?who]
 regards you intently.
[end]

The ultimate internal representation used by the interpreter
is roughly all calls:1

1 The true internal representation treats Write as a primitive, separate from
a call, and also includes a few other non-call primitives such as assignment
statements.

Describe ?who:
 [Write "The"] [Role ?who] [Write ","]
 [Mention ?who] [Write ", is a"]
 [Age ?who] [Gender ?who] [Write "with"]
 [SalientDetail ?who] [Write "."]
 [Mention ?who]
 [Write "regards you intently."]
[end]

We will begin by describing the basic language, and then
describe the syntactic sugar that allows it to read more like
English text.

Core Language
Following the notion of it being an HTN, procedures are
named tasks rather than predicates (as in Prolog) or non-
terminals (as in CFGs). The different ways of achieving a
task are called methods, rather than clauses (Prolog) or rules
(CFGs). Methods can fail, in which case the system back-
tracks and tries the next method. If all methods fail, the task
fails, and its caller backtracks. Execution completes when
the system finds a series of task calls and methods to imple-
ment them such that all methods succeed. Primitive tasks
can be written directly in C#. Compound tasks, are speci-
fied by methods decomposing them into subtasks.

Tasks and methods
The simplest Step programs implement CFGs:

[randomly]
Noun: the cat
Noun: the dog

[randomly]
Verb: bites
Verb: licks
Verb: chases

Methods take the form: task:text, and state that a method of
achieving the specified task is to output the specified text.
The [randomly] annotation states that the subsequent task
should try its methods in random order. Thus, Noun will
randomly generate either “the cat” or “the dog.”
 Bracketed expressions denote calls whose output are sub-
stituted into the output text. Thus:

Sentence: [Noun] [Verb] [Noun]

produces a random version of “the cat/dog bites/licks/chases
the cat/dog”.

Arguments and local variables
Tasks can take arguments, which are pattern-matched to
methods using unification. Local variables have names be-
ginning with ?:

Sentence: [Noun animal] ate [Noun ?]

[randomly]
Noun animal: the cat
Noun animal: the dog
Noun vegetable: the carrot
Noun vegetable: the lettuce
Noun mineral: the dirt
Noun ?: nothing

The first call to Noun will match only its first two methods,
while the second will match any, since the variable ? can
match anything, include the ? variable in the last method.
Thus, Sentence now generates strings of the form “the
dog/cat ate the cat/dog/carrot/lettuce/dirt/nothing”.

Predicates
Tasks need not generate textual output. They can be called
simply to test whether they succeed, in which case they op-
erate as predicates. They can also be called to bind variables
passed in as arguments. For example, if we state:

PreferredPronoun bill he:
PreferredPronoun sally she:
PreferredPronoun masha they:
Pronoun ?who:
 [PreferredPronoun ?who ?what]
 [Write ?what]
[end]

Then the call [PreferredPronoun masha ?pro] will
bind ?pro to “they”, while the call [Pronoun masha] will
output “they” to the text stream.

Generators
Tasks may also generate multiple alternative results, with or
without text output. For example, the following generates
different fragments of text describing a person, ?who:

[generator]
Detail [BlueEyes ?who] 3: blue eyes
Detail [CrookedTeeth ?who] 2: crooked teeth
Detail ?who 0: nothing remarkable

Detail takes two arguments: a person (?who), and a level
of interestingness. Thus, [Detail ?fred 3] will attempt
to generate a level-3-internestingness detail, while [Detail
?fred ?i] will generate the first detail it can, and return
its level of internestingnesss by binding it to ?i.

 The bracketed expressions surrounding the first argu-
ments are guards, stating the method doesn’t match unless
the predicate is true. The first method is equivalent to:

Detail ?who 3: [BlueEyes ?who] blue eyes

If ?who doesn’t have blue eyes, the call to BlueEyes will
fail and the system will move on to the next method.
 Finally, the [generator] annotation states that Detail
is fully non-deterministic. It will not stop with the first so-
lution it finds, but attempt to generate further solutions
should the first be rejected. We will see this used below.

Global state variables
In addition to text output and unification of local variables,
tasks can also update state in the form global variables. Un-
like ? variables, which are local to their methods and bind
through unification, global variables are Capitalized and are
explicitly updated using assignment statements.
 For example, the Mention task generate names or pro-
nouns, as appropriate, by storing discourse context in the
global variables LatestThey, LatestShe, etc.:

Mention LatestThey: they
Mention LatestShe: she
Mention LatestHe: he
Mention ?who:
 [Write ?who] [PreferredPronoun ?who ?pro]
 [Update ?who ?pro]
[end]
Update ?who he: [set LatestHe ?who]
Update ?who she: [set LatestShe ?who]
Update ?who they: [set LatestThey ?who]

Since mention is not marked with [randomly], it will try
its methods in the order listed. The first three match the ar-
gument to the current discourse context (LatestShe, etc).
The fourth is a catch-all that is attempted only when a pro-
noun is impossible. It prints the name of the character and
then updates the discourse context.
 Assignments to variables are undone upon backtracking,
as are unifications and text output. The final text output and
variable bindings show only the choices made in the final,
successful execution path.
 Equivalent versions of Mention can be written to gener-
ate object case (him/her/them), possessive (his, her, their)
and reflective (himself, herself, themselves) pronouns, re-
spectively. Alternatively, they could be packaged as a sin-
gle task that takes two arguments, the object to output, and
the case in which to inflect it. This can also be extended to
support more complex inflections when generating text for
languages with more sophisticated case systems than Eng-
lish. For a general discussion of noun/verb agreement and
feature marking using matching, see (Covington 1993).

Higher-order tasks
Finally, tasks can take other tasks and task expressions as
arguments, allowing the introduction of iteration and aggre-
gation constructs.
 For example the built-in primitive, Max, allows the author
to score different alternative texts and choose the most de-
sirable one. This is how the SalientDetail task referred
to earlier works:

SalientDetail ?who:
 [Max ?salience [Detail ?who ?salience]]

Here, Max calls Detail, but repeatedly forces it to back-
track, generating new solutions, until all possible solutions
have been generated. Along the way, it checks the value of
?salience and remembers the solution with the highest
salience. It then continues execution of the rest of the pro-
gram, using the highest-scoring solution. The program be-
haves as if that solution, and only that solution, had been
run; pronoun bindings and any other state information are
appropriate for the text that is displayed.

Syntactic Sugar
Although the core language is powerful, the many bracketed
expressions break up the flow of the text, leading to text that
looks like code rather than marked-up English. Although
this is unavoidable for tasks like Mention that require con-
trol structure and state manipulation, the bulk of an interac-
tive fiction work would consist of straightforward chunks of
text that call into a few complex tasks like Mention.
 By adding a small amount of syntactic sugar, we can al-
low this simpler, template-like, code to make simple calls
without the use of bracket expressions:

 ?variable
Expands into: [Mention ?variable]

 ?variable/Task
Expands into: [Task ?variable]

 ?variable/Task1+Task2
Expands into:
 [Task1 ?variable] [Task2 ?variable]
 As many tasks as desired can be included.

 ?variable/Relation/Printer
Expands into:
[Relation ?variable ?t] [Printer ?t]
Where ?t is a temporary variable.

The last form is best explained by an example. Suppose
there is a predicate called Brother that succeeds when-
ever its two arguments are brothers. Then the text:

?who has a brother, ?who/Brother/Name

might generate something like “Sharon has a brother, Bill,”
the call to Brother having bound ?t to Bill, and the call
to Name having printed it. If this expression appears inside
of a backtracking construct, such as Max or ForAll, and
Sharon has multiple brothers, then Brother will generate
successive brothers, and they will each be Named. Multi-
ple relations can be stacked, as in:

?who/Spouse/Brother/Name

which would print the name of ?who’s brother-in-law. Fi-
nally, since the “/Name” in the construction is awkward, it
can be omitted, in which case the system will call Men-
tion on the brother. Thus:

?who has a brother, ?who/Brother

expands into the equivalent code:

[Mention ?who] has a brother, [Brother ?who
?t] [Mention ?t]

Example
Let’s write a more elaborate version of Mention that further
adapts referring expressions to context. We’ll start by
changing the final rule for Mention to call FirstMention
the first time ?who is mentioned, and call Subsequent
thereafter:

Mention ?who:
 [case ?who] Mentioned : [Subsequent ?who]
 [else] [FirstMention ?who]
 [add ?who Mentioned] [end]
 [PreferredPronoun ?who ?pro]
 [Update ?who ?pro]
[end]

FirstMention and Subsequent can be customized how-
ever one needs. In this case, we’ll have FirstMention
generate full name (“Bill Taylor”) and Subsequent gener-
ate something shorter (“Bill”, “Mr. Taylor” or “Taylor”):

FirstMention ?who: ?who/FirstName+LastName
Subsequent [Familiar ?who]: ?who/FirstName
Subsequent ?who: ?who/Honorific+LastName
Subsequent ?who: ?who/LastName

Subsequent generates the first name for characters who
are on familiar terms with the narrator, otherwise honorific
and last name, when possible, or last name if no honorific is
known. We might determine the honorific like this:

[fallible]
Honorific [PhD ?who]: Dr.
Honorific ?who: ?who/PreferredPronoun/Honor
[fallible]
Honor he: Mr.
Honor she: Ms.

Since not all characters have honorifics, the [fallible]
annotation declares that Honorific failing isn’t considered
an error. If Honorific fails, it just triggers backtracking
so that Subsequent moves on to its next method.
 This is an important point. Nondeterministic control frees
the author to call fallible tasks as if they will work, knowing
the system will automatically clean up and try something
else should they fail. Without it, callers such as Subse-
quent would need elaborate checks to test whether it was
safe to call the fallible task, and those checks would need to
be found and updated each time the task was modified.

Implementation

Step is an interpreter written in C#. Each nondeterministic
operation (trying a method, calling a task, etc.) takes as an
argument a current state, which contains everything that can
be changed by the operation (text generated, variable bind-
ings). When successful, the task produces a new state, per-
haps with additional text or bindings.
 This requires that states be represented as immutable data.
When we make a new state, we preserve the original one in
case we backtrack. Note that nondeterministic languages
obey strict stack discipline, so states can be stack allocated
when implemented in languages that support it.

Control structure
Since nondeterministic operations can generate zero, one, or
many states, they generate candidate states one by one, feed-
ing them to a continuation, a callback that approves or re-
jects the new state. As soon as the continuation returns true
for a generated state, the operation returns true. If the oper-
ation runs out of new states without the continuation return-
ing true, it returns false, meaning the operation failed.
 A simplified version of the core interpreter is as follows.
A CompoundTask is an object containing a set of Method
objects and a C# method called TryTask:

bool TryTask(object[] args, State s,
 Continuation k) {
 foreach (var m in Methods)
 if (m.TryMethod(args, s, k))
 return true;
 return false;
}

This tries each method, allowing it to generate new states
(new text, bindings) and pass them to the continuation. If
the continuation accepts one of the states generated by a
method, the method immediately returns true and so does
the task. If method fails (returns false), the task tries subse-
quent methods until some method is successful. If no
method is successful, the task fails and returns false.
 A Method is an argument pattern to match the arguments
against, together with a linked list of Calls to different
tasks. Its TryMethod method looks like:

bool TryMethod(object[] args, State s,
 Continuation k)
 => s.MakeFrame().Unify(args, Pattern,
 out newState)
 && FirstCall.TryCall(newState, k));

MakeFrame makes fresh logic variables for the method’s
arguments, resulting in a new state. The method then unifies
its pattern with its arguments, resulting in a new binding list,
and hence another new state. It then tries the first call in its
chain, passing it the continuation and new state. If either
unification or call fails, the method fails.
 A Call has fields Task (task to call), Arguments (to
pass to it), and Next (the next Call in the method). It also
has its own TryCall method, which will attempt to recur-
sively call TryTask, passing a continuation that invokes ei-
ther the next call in the method’s chain of calls, or, if we’re
at the end of the chain, its own continuation:

bool TryCall(State s, Continuation k) {
 => Task.TryTask(
 Arguments, s,
 ns => (Next == null)
 ? k(ns) : Next.Try(ns, k));

 Finally, the game’s C# code can invoke a Step task by
calling its TryTask method and passing it a continuation
that saves the final state and returns true:

string Call(Task t, object[] args) {
 State result = null;
 t.TryTask(args, EmptyState,
 s => { result = s; return true; })
 return result.Output;
}

Alternatively, it could return the entire State, including
variable bindings, allowing the game to retain discourse
context from call to call. It can also be used to get infor-
mation about the generated utterance, implement a version
of Expressionist’s content bundles (Ryan, et al. 2016).
 The code above is highly simplified. The real version of
TryTask tries Methods in random order when the task is

tagged with [randomly]. It also passes TryMethod a con-
tinuation that counts the number of solutions, since non-
[generator] tasks are easier to debug if they don’t gener-
ate multiple solutions, and non-[fallible] tasks are eas-
ier to debug if they throw exceptions upon failure.
 The real version of TryCall includes a check for
whether the task to call is a primitive task in which case its
C# implementation is called directly. The real system also
passes the state as separate arguments for text output and
variable bindings rather than as a unified State object.
 That said, we hope it is clear from the foregoing that im-
plementing a full nondeterministic system need not be diffi-
cult. The three C# methods comprising the simplified core
interpreter is 17 lines of code. The most sophisticated pro-
gramming technique used is λ expressions, which are now
quite commonplace.

Related Work

While Step is not intended to be a full interactive finction
language, there are nonetheless a number of interactive fic-
tion languages that both generate text and also use some
kind of declarative programming. Inform 7 (Nelson 2006),
the oldest and best developed of these, uses an English-like
syntax to allow authors to write deterministically pattern-
matched rules for game logic. Versu (Evans and Short 2014)
uses straightforward text templates, but its game logic is im-
plemented in a novel logic programming language. Both
systems use template-based NLG, although Inform’s ap-
pears to be equivalent to a CFG. Martens’ Ceptre is a logic
programming language for interactive narrative based on
linear logic; Martens’ Quiescent Theatre compiles linear-
logic narratives to Twine, using templated text (Martens
2015). StoryAssembler (Garbe et al. 2019) combines a for-
ward state-space planner with an HTN planner to generate
branching choice-driven narratives. A template system is
then used for text generation.
 Another IF language, Curveship (formerly known as nn),
uses a full natural language generation pipeline to transform
those symbolic structures into English surface text, allowing
it to dynamically change grammatical tense and mood
(Montfort 2007). More recently, NLG pipelines have been
implemented in a few research games. SpyFeet (Reed et al.
2011a, 2011b) can dynamically vary generation based on
parameters such as character personality. Bot Colony
(Joseph 2012) generates English from logical forms, alt-
hough the authors’ paper focused primarily on NL under-
standing rather than generation. MKULTRA (Horswill
2014) also generated surface forms from logical forms,
however it did so using definite clause grammars rather than
a full NLG pipeline.
 Other games and generative text systems use some variant
of CFGs. Tracery (Compton et al. 2014; Compton and

Mateas 2015) is an extremely successful CFG-based gener-
ator designed for casual users. It augments the base CFG
with the ability to call arbitrary JavaScript code. Expres-
sionist (Osborn et al. 2017; Ryan et al. 2015; Ryan et al.
2016; Ryan et al. 2016) augments CFGs with a tagging
mechanism such that the input is a set of tags that must be
generated and the output is a string plus a set of tags that
were generated. The exact operation of the system isn’t de-
scribed, but it appears to be similar to an HTN in which a
tag flips a bit in the state output. Dear Leader’s Happy Story
Time (Horswill 2016) used a higher-order HTN similar to
Step, but was implemented as an embedded language in
Prolog, making it considerably less accessible.
 Dunyazad (Mawhorter 2016) uses a template/CFG
scheme to generate text from a logical form. It includes a
number of extensions to handle pronominalization and sub-
ject/verb agreement, and contains an interesting scheme for
imposing a tree structure on the names of non-terminals,
with wildcard matching of non-terminals.
 Step supports a strict superset of the functionality of the
CFG-based systems, yet it is surprisingly simple. Its source
code is 17% smaller than Expressionist’s.

Conclusion

Step allows developers to add flexible text generation to any
Unity game. It is not a self-contained IF engine such as
Twine or Inform, nor is it a causal creator such as Tracery.
It is intended for adaptive delivery of hand-authored dialog
and narration with a minimum of pain and a maximum of
flexibility.
 Step allows simple use cases to be written simply; a Trac-
ery-style CFG can be written without learning anything
Prolog-like. More sophisticated features such as pronomi-
nalization or list aggregation can be added easily by writing
a small amount of code, or by using a library written by oth-
ers. Since the features are written in Step code, they can be
adapted for a given game without changing the interpreter.
 Step does have limitations. While it is can be used to in-
flect words in languages with sophisticated case systems,
the resulting scripts look less like story text and more like
Prolog or SHOP code. So Step is not a solution to the prob-
lem of localization to multiple languages.
 Finally, Step demonstrates that full pattern-directed, non-
deterministic programming can be implemented nearly as
easily as the simpler CFG systems. We strongly recommend
the use of pattern-directed invocation in similar projects.

Acknowledgements

I would like to thank the reviewers, Ethan Robison, Rob
Zubek and Matt Viglione for advice and comments, and
Ethan for being willing to kick the tires on the system.

References

Aho, Alfred V. and Jeffrey D. Ullman. 1977. “Principles of
Compiler Design (Addison-Wesley Series in Computer Science
and Information Processing).”

Ait-Kaci, Hassan. 1991. Warren’s Abstract Machine: A Tutorial
Reconstruction. Cambridgte, MA: MIT Press.

Clocksin, William F. and Christopher S. Mellish. 2003.
Programming in Prolog: Using the ISO Standard. 5th ed. New
York, NY: Springer.

Compton, Kate, Benjamin Filstrup, and Michael Mateas. 2014.
“Tracery : Approachable Story Grammar Authoring for Casual
Users.” Papers from the 2014 AIIDE Workshop, Intelligent
Narrative Technologies (7th INT, 2014) 64–67.

Compton, Kate and Michael Mateas. 2015. “Casual Creators.”
Proceedings of the Sixth International Conference on
Computational Creativity June.

Covington, Michael A. 1993. Natural Language Processing for
Prolog Programmers. Prentice Hall.

Evans, Richard and Emily Short. 2014. “Versu - A Simulationist
Storytelling System.” IEEE Transactions on Computational
Intelligence and AI in Games 6(2):113–30.

Friedman, Daniel P., William E. Byrd, Oleg Kiselyov, and Jason
Hemann. 2018. The Reasoned Schemer. 2nd editio. MIT Press.

Garbe, Jacob, Max Kreminski, Ben Samuel, Noah Wardrip-fruin,
and Michael Mateas. 2019. “StoryAssembler : An Engine for
Generating Dynamic Choice-Driven Narratives.” P. August in
Foundations of Digital Games (FDG). San Luis Obispo, CA, USA:
ACM Press.

Horswill, I. D. 2016. “Dear Leader’s Happy Story Time: A Party
Game Based on Automated Story Generation.” in AAAI Workshop
- Technical Report. Vol. WS-16-21-.

Horswill, Ian. 2014. “Architectural Issues for Compositional
Dialog in Games.” in AAAI Workshop - Technical Report. Vol.
WS-14-17.

Ingold, Jon. 2015. “Adventure in Text: Innovating in Interactive
Fiction.” in Game Developer’s Conference. San Francisco, CA:
UBM Techweb.

Joseph, Eugene. 2012. “Bot Colony – a Video Game Featuring
Intelligent Language-Based Interaction with the Characters.” in
Workshop on Games and NLP (GAMNLP). Raleigh, North
Carolina, USA: AAAI Press.

Martens, Chris. 2015. “Programming Interactive Worlds with
Linear Logic.” Carnegie Mellon University.

Mawhorter, Peter. 2016. “Artificial Intelligence as a Tool for
Understanding Narrative Choices: A Choice-Point Generator and
a Theory of Choice Poetics.” University of California, Santa Cruz.

Montfort, Nick. 2007. “Generating Narrative Variation in
Interactive Fiction.” University of Pennsylvania.

Nau, Dana, Yue Cao, Amnon Lotem, and Hector Munoz-Avila.
1999. “SHOP: Simple Hierarchical Ordered Planner.” Pp. 968–73
in Proceedings of the 16th international joint conference on
Artificial intelligence. Stockholm, Sweden: Morgan Kaufmann
Publishers Inc.

Nelson, Graham. 2006. “Natural Language, Semantic Analysis,
and Interactive Fiction.”

Osborn, Joseph C., James Ryan, and Michael Mateas. 2017.
“Analyzing Expressionist Grammars by Reduction to Symbolic
Visibly Pushdown Automata Analyzing Expressionist Grammars

by Reduction to Symbolic Visibly Pushdown Automata.” in
Intelligent Narrative Technologies (INT). Snowbird, UT: AAAI
Press.

Pereira, Fernando C. N. and Stuart Shieber. 1987. Prolog and
Natural Language Analysis. Brookline, MA: Microtome
Publishing.

Pereira, Fernando C. N. and David H. D. Warren. 1980. “Definite
Clause Grammars for Language Analysis - A Survey of the
Formalism and a Comparison with Augmented Transition
Networks.” Artificial Intelligence 13(231–278).

Reed, Aaron A, Ben Samuel, Anne Sullivan, Ricky Grant, April
Grow, Justin Lazaro, Jennifer Mahal, Sri Kurniawan, Marilyn
Walker, and Noah Wardrip-fruin. 2011a. “A Step Towards the
Future of Role-Playing Games : The SpyFeet Mobile RPG A Step
Towards the Future of Role-Playing Games : The SpyFeet Mobile
RPG Project.” in Artificial Intelligence and Interactive Digital
Entertainment (AIIDE).

Reed, Aaron A, Ben Samuel, Anne Sullivan, Ricky Grant, April
Grow, Justin Lazaro, Jennifer Mahal, Sri Kurniawan, Marilyn
Walker, and Noah Wardrip-fruin. 2011b. “SpyFeet : An Exercise
RPG.” in Foundations of Digital Games. Bordeaux, France.

Reed, Aaron A., Ben Samuel, Anne Sullivan, Ricky Grant, April
Grow, Justin Lazaro, Jennifer Mahal, Sri Kurniawan, Marilyn
Walker, and Noah Wardrip-Fruin. 2011. “A Step Towards the
Future of Role-Playing Games: The SpyFeet Mobile RPG Project.”
in Proceedings of the Seventh Conference on Artificial Intelligence
and Interactive Digital Entertainment (AIIDE-11). Stanford, CA.

Roy, Peter Van. 1993. 1983–1993: The Wonder Years of
Sequential Prolog Implementation. Paris, France.

Ryan, James, Michael Mateas, and Noah Wardrip-fruin. 2016.
“Characters Who Speak Their Minds : Dialogue Generation in
Talk of the Town Characters Who Speak Their Minds : Dialogue
Generation in Talk of the Town.” in Artificial Intelligence and
Interactive Digital Entertainment (AIIDE). Burlingame, CA:
AAAI Press.

Ryan, James Owen, Andrew Max Fisher, Taylor Owen-milner,
Michael Mateas, and Noah Wardrip-fruin. 2015. “Toward Natural
Language Generation by Humans.” in Intelligent Narrative
Technologies (INT). Santa Cruz, California: AAAI Press.

Ryan, James, Ethan Seither, Michael Mateas, and Noah Wardrip-
fruin. 2016. “Expressionist : An Authoring Tool for In-Game Text
Generation Expressionist : An Authoring Tool for In-Game Text
Generation.” Pp. 221–33 in International Confedrence on
Interactive Digital Storytelling (Lecture Notes in Computer
Science).

Warren, David H. D. 1983. An Abstract Prolog Instruction Set.
Menlo Park, CA.

