
SEVEN: TUPLES AND HIGHER-ORDER TASKS

To recap, we’ve discussed how Step executes calls to tasks – both
predicates and tasks that print things – by matching the parameters
specified in the call to the parameters for the different methods of the task.
It tries a method when it can match each parameter in the call to its
respective parameter in the method.

Thus far, all the values that have been passed along for parameters have
been single pieces of data – a string, a variable, maybe a number. But
there are times when we want to pass something more complicated as the
value of a parameter. In effect, we want to package several pieces of data
together as a single piece of data called a tuple.

This is a capability that’s simultaneously absolutely crucial to any software,
while also being somewhat hard to motivate to non-programmers in the
abstract. So we’re going to give a brief motivating example, tell you what
tuples are and how to use them, and leave it at that. As you write Step
code it will become clear why you need tuples.

REPRESENTING BELIEFS

For example, suppose we’re writing a story generator that, among other
things, generates text to describe characters having a falling out. It would
probably want to be parameterized by what they were arguing about. We
would first want some way of finding something for them to argue about.
So let’s assume that we have a predicate, Believes, that lets us tell
whether a character believes something or not. For example:

[predicate] [randomly]
Believes john god_exists.
Believes john money_is_important.
Believes richard god_exists.
Believes richard helping_humanity_is_important.

Then we could write a predicate like this (note we have to break the rules
into separate lines to make it fit in word):

[predicate] [randomly]
Disagreement ?c1 ?c2 ?disagreement:
 [Believes ?c1 ?disagreement]
 [Not [Believes ?c2 ?disagreement]]
[end]
Disagreement ?c1 ?c2 ?disagreement:
 [Believes ?c2 ?disagreement]

If you’ve programmed before,
this is introducing a mostly
familiar concept: data
structures, in particular record
structures (e.g. structs in
C/C++). So in that sense,
you’re already familiar with
the basic idea: you want to be
able to package several data
objects together as one. For
example, you might want a
Person data type that has
fields of their FirstName and
LastName. In Step, these are
called tuples.

Logic programming languages
have the same ability to
represent record structures as
other languages, but that
functionality gets exposed
differently:

• You don’t need type
declarations

• You create tuples just by
typing them in a form that
looks a little like a
constructor in C++ or Java:
[person “Jane” “Godall”]

• You access data in a tuple
using pattern-matching

FOR PROGRAMMERS

 [Not [Believes ?c1 ?disagreement]]
[end]

Then we could have a task like:

FallingOut ?c1 ?c2:
[Disagreement ?c1 ?c2 ?dis]
?c1 and ?c2 had a falling out over ?dis.
[end]

Which might generate some text like:

John and Richard had a falling out over helping humanity is important.

That gets the idea across, but it’s not awesome grammar. We can improve it by telling the system how to print
things like helping_humanity_is_important:1

Mention helping_humanity_is_important: whether helping humanity is important.
Mention money_is_important: whether money is important.
Mention status_is_important: whether status is important.

This at least generates more fluent text (emphasis added):

John and Richard had a falling out over whether helping humanity is important.

A NEW KIND OF DATA: THE TUPLE

The thing is, the Mention rules above are almost the same. Rather than treating all these separately, we can unify
them all by having a slightly more complex representation of beliefs: when we want to talk about the belief that
something is important, we’ll write that in the code as [important something], where something is the thing
that’s supposed to be important. Then we can write John and Richard’s beliefs as:

[predicate] [randomly]
Believes john god_exists.
Believes john [important money].
Believes richard god_exists.
Believes richard [important helping_people].

By bracketing together the word important with the thing that’s important, we tell the system that they come as
a unit, and they’re one parameter. Now we can collapse the different Mention rules down to just:

Mention [important ?thing]: whether ?thing is important.

These bracketed values are called tuples and they let us represent complex data relatively compactly. The pattern
matching process treats tuples largely the way it treats other data objects: if you match a tuple against a variable
with no value, the variable is given the tuple as its value. If you match a tuple against something that isn’t a tuple,
that just fails, since they’re different. The only thing that’s slightly complicated is that when you match tuples with
one another; then they must have the same number of elements and the individual elements need to match. So

1 See “6- Adapting text to context” for a discussion of how printing works, and the Mention predicate in particular.

we can’t match [important money] to [important], but we can match [important money] to
[important ?thing] by setting ?thing = money.

TUPLES THAT LOOK LIKE CODE

You’ve actually run into tuples before. When we said:

[Not [Believes ?c2 ?disagreement]]

We were actually calling Not with one argument that was a tuple: [Believes ?c2 ?disagreement]. Not
takes that tuple and tries to run the task it specifies, i.e. calling Believes with ?c2 and ?disagreement as
parameters. If the call to Believes succeeds, then Not fails; if Believes fails, then Not succeeds. Not just
calls the task specified by the tuple, checks whether it failed or succeeded, and then does the opposite.

We call Not a higher-order predicate because it takes code as an argument rather than plain old data.2 Higher-
order tasks are very important. In the case of Not, it’s a higher-order task that’s built in. But you can make your
own higher-order tasks/predicates.

BELIEF AND DELUSION

For example, suppose we have a predicate, Friends, that expresses when two characters are friends. So we
would assert than John and Richard are friends with:

Friends john richard.

And we can do the usual things with Friends that we do with other predicates: we can ask if john and richard are
friends by running:

[Friends john richard]

and we can also who John’s friends are by running

 [Friends john ?who]

But now we can also represent John’s beliefs about his friends by combining Believes and Friends:

Believes john [Friends john richard].
Believes john [Friends john elon_musk].

If we assume that in this story world, John has never actually met Elon Musk, then John has one true belief about
his friends, and one false one.

We can now write a variant of Believes, called Delusion, that tells us about things a character believes that
aren’t true within the story world:

2 This is a little complicated, since as we just said, the “code” we passed into Not was really just a tuple and tuples
just are data. This is a fundamental and crucial property of computation: that code is just another kind of data. So
really, what we should have said is that a higher-order predicate takes arguments that are code rather than some
other kind of data.

Delusion ?who ?fact: [Believes ?who ?fact] [Not ?fact]

Now if we add the rules:

Disagreement ?c1 ?c2 [delusion ?c1 ?fact]:
 [Delusion ?c1 ?fact]
 [Not [Believes ?c2 ?fact]]
[end]
Mention [delusion ?who ?fact]: ?who’s crazy belief that ?fact.
Mention [Friends ?a ?b]: ?a and ?b are friends.

The system can generate output like:

John and Richard had a falling out over John’s crazy belief that John and Elon
Musk are friends.

	Representing beliefs
	A new kind of data: the Tuple
	Tuples that look like code
	Belief and delusion

