
THREE: PATTERN MATCHING 
 

When you run a task, also known as calling the task, the system searches for a method that matches the 
parameters of the call.  In particular, it matches the parameters of the call to the part of the method before the 
colon, known as its head.  The head of the method: 

SomeTask 1 ?x: Bla bla bla 

is the part that says “SomeTask 1 ?x:”.  It’s the part that specifies what parameters this method is appropriate 
for.  Parameters can either be variables, such as ?x, that match anything or specific values that such as 1, john, or 
“Some quoted text”.  Things that aren’t variables are called constants.  Constants can only match to 
themselves: 1 matches 1, but not 2; john matches john, but not 1 or 2.  Here are some examples: 

a) SomeTask 1 2: bla bla bla 
Will only match a call with 1 and 2 for the parameters. 

b) SomeTask 1 ?x: bla bla bla 
Will match any call that has 1 for the first parameter, since the ?x can match anything.  In addition, ?x 
will get set to whatever the second parameter is. 

c) SomeTask ?x 1: bla bla bla 
Will match any call that has 1 for the second parameter, and ?x will be set to the second parameter. 

d) SomeTask ?x ?y: bla bla bla 
Will match any call at all.  ?x will be set to the first parameter, and ?y the second. 

e) SomeTask ?x ?x: bla bla bla 
Will match any call at all in which the two parameters are the same.  ?x will be set to that shared value. 

The last example here brings up an important point: if a variable appears more than once, it must match the same 
value each time. 

Let’s look at which methods each of the following calls would match.  To save space, I’ve changed the name of the 
task from SomeTask to just Task: 

 Task 1 2: Task 1 ?x: Task ?x 1: Task ?x ?y: Task ?x ?x: 
[Task 1 1] No Yes: ?x=1 Yes: ?x=1 Yes: ?x=1, ?y=1 Yes: ?x=1 
[Task 1 2] Yes Yes: ?x=2 No Yes: ?x=1, ?y=2 No 
[Task 1 3] No Yes: ?x=3 No Yes: ?x=1, ?y=3 No 
[Task 2 1] No No Yes: ?x=2 Yes: ?x=2, ?y=1 No 
[Task 2 2] No No No Yes: ?x=2, ?y=2 Yes: ?x=2 
[Task 2 3] No No No Yes: ?x=2, ?y=3 No 

 

MATCHING VARIABLES WITH OTHER VARIABLES 

In the table above, we only included variables in the method heads, not in the calls.  But you can include a variable 
in a call too.  This behaves differently, depending on whether the system has already matched that variable to a 
value.  If we say [Task ?a 2] but the system has already matched ?a to 1, then we’re really just doing [Task 1 



2], and we can use the table above.  But if the system has never matched ?a to anything, then ?a can be matched 
freely.  That means three things: 

• Specifying the variable in the call doesn’t restrict the methods that can be used, since it will match 
anything 

• The variable in the call can be given a value by the method being called, as a result of the matching. 
• The matching process can result in the system deciding that two variables must have the same value, 

without yet having a value for either (see below). 

Let’s look at what does and doesn’t match when we put variables in the call: 

 Task 1 2: Task 1 ?x: Task ?x 1: Task ?x ?y: Task ?x ?x: 
[Task 1 ?a] Yes; ?a=2 Yes: ?a=?x Yes: ?x=1, ?a=2 Yes: ?x=1, ?y=?a Yes: ?x=1, ?a=1 
[Task ?a 1] No Yes: ?x=2, ?a=1 Yes; ?a=?x Yes: ?x=?a, ?y=1 Yes: ?x=1, ?a=1 
[Task ?a ?b] Yes; ?a=1,?b=2 Yes: ?a=1,?b=?x Yes; ?a=?x,?b=1 Yes: ?x=?a,?y=?b Yes: ?a=?b=?x 
[Task ?a ?a] No Yes: ?a=?x=1 Yes: ?a=?x=1 Yes: ?x=?y=?a Yes: ?x=?a 

 
Notice that for many of these, specifically the ones in green, the system is able to match the variables, but doesn’t 
come away from it knowing what the values of some of the variables are.  It only knows that certain variables have 
have the same values as one another.  It remembers that, so that if it matches either variable to a value in the 
future, then it will know that both variables must have that value. 

FAILED MATCHES 

Finally, it should be pointed out that if the system gets partway through a match, but then fails, for example 
because the first parameters match, but not the second, then any changes to the variables made during the match 
get undone.  For example, when matching [Task ?a 1] to [Task 1 2], above, the system will tentatively set 
?a to 1 when matching the first parameter.  But when the second parameters fail to match, it restores ?a to its 
original, “unset” state. 

NAMING OF VARIABLES 

In these examples, I’ve been at pains to make sure that the variables that appear in the calls have different names 
from the variables that appear in the methods, so as to prevent confusion.  So this is a good time to mention that: 

• Variables with the name in the same method are interpreted as meaning the same variable (we knew this 
already). 

• However, variables in different methods with the same name are treated as different variables that just 
happen to have the same name.  The system won’t confuse them with one another. 

• If a task is called more than once, each call has its own set of variables.  So calling a task doesn’t 
permanently set any of its variables. 

ARE YOU CONFUSED YET? 

I know this is confusing.  It takes some getting used to.  But remember that this is just describing something you’d 
already understood at least the simple cases of.  We’ve just gone into more detail to talk about how things are 
working under the hood.  Knowing this will help you when we look at some fancier techniques.  But most of the 
time as a programmer, you don’t have to think down at this level of detail. 



FOR PROGRAMMERS 

If you’ve programmed before, this may have been a kind of kick in the head.  Variables work very differently than 
they do in Python.  Whereas in Python, variables get their values either by being parameters that are filled in 
during a call, or by being updated with assignment statements like x=x+1.  In Step, variables more or less only get 
values through pattern matching.  Moreover, once a variable has a value, you can’t update it.  This turns out to be 
very useful for certain kinds of programming. 

Later, we will introduce other kinds of variables you can update with assignment statements, so you will be able to 
write x=x+1.  But the vast majority of the code you write will work through pattern matching. 

FOR CS MAJORS (OPTIONAL) 

In AI research and programming language research, the pattern matching technique used here is known as 
unification and the algorithm used is called the unification algorithm.  If you want to know how it works, here’s a 
sketch. 

A variable basically looks like an object that can either point at nothing (it has no value), an object (that’s its value), 
or another variable that it’s supposed to be equal to, which we’ll call its substitute.  When we work with a variable, 
we always check to see if it has a substitute.  If so, we use the substitute instead.  It may have a substitute itself, 
but we eventually reach some variable that doesn’t have a substitute.  We’ll call that the “final substitute.”  Nearly 
all the time, when we work really work with its final substitute.  The “real” value of the variable, if any, is the value 
of its final substitute. 

class Variable { 
   // The value of the variable, if any 
   public object Value; 
   // If non-null, the substitute actually holds this variable’s value 
   public Variable Substitute; 

   // Follow the chain of substitutes to find a variable that isn’t  
   // substituted 
   public object FinalSubstitute() { 
      for (var v = this; v.substitute != null; v = v.substitute); 
      return v; 
   } 

   // Mark that this variable is equal to o. 
   // This should only ever be called when both Value and Substitute are null. 
   public void SetEqual(object o) { 
     if (o is Variable v) 
        Substitute = v; 
     else 
        Value = o; 

   // The value of the variable, if any. 
   public object RealValue() => FinalSubstitute().Value; 
} 



We also define a help function, Finalize, that takes an object and returns it if it isn’t a variable.  If it’s a variable, 
it finds its final substitute, and if that final substitute has a value, returns that.  Otherwise, it returns the final 
substitute: 

public object Finalize(object o) { 
  if (o is Variable v) { 
     v= v.FinalSubstitute(); 
     if (v.Value != null) 
        return v.Value; 
     else return v; 
  } 
  else return o; 
} 

Matching two values then looks like this: 

public bool Match(object a, object b) { 
   a = Finalize(a); 
   b = Finalize(b); 
   if (a is Variable finalA) { 
      finalA.SetEqual(b); 
      return true; 
   } else if (b is Variable finalB) { 
      finalB.SetEqual(a); 
      return true; 
   } 
   return a == b; 
} 
 
public bool MatchArray(object[] a, object[] b) { 
  if (a.Length != b.Length) return false; 
  for (var i = 0; i< a.Length; i++) 
     if (!Match(a[i], b[i])) return false; 
  return true; 
} 

This is pretty much the algorithm.  It correctly tells you if two values or arrays of values match one another, and 
handles any equalities between variables it finds along the way.  The thing it doesn’t handle is undoing the 
modifications to the variables if you get partway through and realize they don’t match.  We’ll talk about how to 
handle that later. 

 


	Matching variables with other variables
	Failed matches
	Naming of variables
	Are you confused yet?
	For programmers
	For CS majors (optional)

