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OVERVIEW 

TELL is a simplified1 logic programming language embedded in C#, meaning that TELL code literally is C# code. 

Logic programming is a more declarative language than C#.  In C#, you tell the computer what to do.  In a 

declarative language, you tell it what an answer would look like, and leave it to the language to decide how best to 

achieve that.  In practice, programmers do have to be mindful of how the language will try to solve the problem.  

But for many purposes, it’s still more convenient than writing explicit code in C#. 

To use TELL, you just add TELL.DLL to your project and you can mix and match TELL code with C#.  While it was 

developed with Unity games in mind, it has no Unity dependencies.  TELL is free software distributed under the 

MIT License, available at https://github.com/ianhorswill/TELL. 

If you’re already familiar with logic programming, you can safely skip to How to write TELL code in C#. 
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INTRODUCTION 

Logic programming languages define their code in terms of predicates2 and rules, rather than in terms of 

functions/methods.  Like functions, predicates take arguments.  But they express some relationship between the 

arguments, or if it takes only one argument, some set of things that have some property: 

Concept to express Type of predicate Example 

Membership in a set Single-argument predicate Integer[x], meaning “x is an integer” 

Relationship between two things Two-argument predicate Sibling[x,y], “meaning x and y are siblings” 

Function of one variable Two-argument predicate F[x,y] meaning “y=f(x)” 

Relationship between three things Three-argument predicate Parents[c,m,f] meaning “m is c’s mother 
and f is c’s father” 

Two-argument function Three-argument predicate F[x,y,z] meaning “z=f(x,y)” 

For example, we might define a relationship, Sibling, that’s true when two people are siblings.  For example, 

Sibling[“Jayden”, “Sora”] might be true, but Sibling[“Sora”, “Keisha”] might be false. 

QUERIES 

A query is a series of predicate calls.  The predicates can be passed specific values as arguments, such as 

Sibling[“Jayden”, “Sora”].  If all the predicates have specific values for their arguments, then we’re just 

asking if all the predicates are true of their arguments. 

However, we can also pass “logic variables” as arguments to predicates, and these behave somewhat differently 

than normal programming language variables (see Logic variables and pattern matching).  If you run a query that 

contains variables, you are asking the system if there’s a set of values for the variables that will make all the calls 

true.  For example, if we assume the Parent predicate is true when the second argument is a parent of the first, 

then we might ask if Keisha is Jayden’s aunt by asking: 

Parent[“Jayden”, x], Sibling[x, “Keisha”] 

meaning: “can you find an x who is Jayden’s parent and Keisha’s sibling?”  If so, the query is true, otherwise false. 

Much of the usefulness of logic programming comes from the fact that it can report back to you the values of the 

variables it found.  Moreover, if you don’t like the value that it found, you can ask it to try to find a different value, 

or to find all the possible values.  So, a single predicate can be used in many different ways: 

Query Meaning 

Parent[“Sora”, x] Who is a parent of Sora? 

Parent[x, “Sora”] Who is a child of Sora? 

Parent[“Jayden”, “Sora”] Is Jayden Sora’s child? 

Parent[x, y] Give me a parent/child pair (I don’t care who) 

Parent[x, y], Parent[y, z] Give me a child/parent/grandparent triple (I don’t care who) 

 
2 Predicates are essentially the same as relations, although they’re represented differently than they are in 
databases. 



Parent[x, y], Parent[y, “Sora”] Give me Sora’s kid/grandkid 

Queries are the core of the code that gets run.  When your C# code calls into TELL, it’s running a query, either to 

test the truth of a proposition, or to solve for the values of one or more variables.  However, queries are also the 

basis of rules, which are the core of most logic programming code. 

RULES 

A TELL rule says “this is true if those things are all true.”  In particular, it says this “this predicate with these 

arguments is true if this query is true.”  While it’s possible to define predicates directly in terms of C# code, 

predicates are typically defined in terms of rules; this is where logic programming gets its power.  A predicate is 

true for some set of arguments if one of its rules says it’s true.  Otherwise, it’s false. 

For example, if we’ve defined the Parent and Sister predicates, we can define an Aunt predicate by the rule: 

Aunt[c, a].If(Parent[c, p], Sister[p, a]); 

This says “a is c’s aunt if p is c’s parent and a is p’s sister,” i.e. “an aunt is a child’s parent’s sister.”  Rules are 

assumed to apply for any values of the variables that appear before the If().  Given that, if we want to know who 

Jayden’s aunt is, we can substitute Jayden in for c in the rule above, and run the resulting query:  

Parent[“Jayden”, p], Sister[p, a] 

That’s the basic strategy of classical, “Prolog-style” logic programming systems: if you want to know if some 

predicate call is true, or equivalently, to find values of the variable in it, substitute its arguments into each of the 

predicate’s rules, and run their If() queries.  If one of the rules works, we’re done (the call “succeeds”).  If not, 

the call is false (aka it “fails”). 

Suppose we don’t have a Sister predicate defined, but we have Sibling and Female.  Then we can define the 

former in terms of the latter: 

Sister[x,y].If(Sibling[x,y], Female[y]); 

Now, if we run the query: 

Aunt[“Jayden”, a]  

The system essentially substitutes “Jayden” into the body to get: 

Parent[“Jayden”, p], Sister[p, a] 

And substitutes p for x and a for y in the Sister rule to get: 

Parent[“Jayden”, p], Sibling[p, a], Female[a] 

And then finds values for p and a that make that work. 

Now, let’s look at a more complicated predicate.  Suppose we want to define ancestry in terms of the Parent 

predicate.  We can say: 

Ancestor[x,y].If(Parent[x,z], Ancestor[z,y]); 



This says “y is x’s ancestor if z is their parent and y is z’s ancestor”.  Again, when a rule uses a variable, it is 

implicitly saying the rule applies for all possible values of its variables.  So this works, no matter what x and y we 

choose, and for any z, so long as z is actually x’s parent and a descendant of y. 

This is a recursive rule.  And so we need another rule to be a base case.  So we usually say that a person is their 

own ancestor: 

Ancestor[x,x].If(); 

Ancestor[x,y].If(Parent[x,z], Ancestor[z,y]); 

Note that this new rule has no query in the If() part; it’s true unconditionally.  Rules like this are often called 

“facts” in logic programming, and so in TELL, we would usually replace the If with Fact just to make this clearer: 

Ancestor[x,x].Fact(); 

Ancestor[x,y].If(Parent[x,z], Ancestor[z,y]); 

This says “any x is it’s own ancestor.” 

Of course, you could have written this as a normal recursive function to test whether y was x’s ancestor: 

bool IsAncestor(Person x, Person y) => x == y || IsAncestor(Parent(x), y); 

But our rules don’t just let us test whether two specific people are ancestors: 

Ancestor[“Jayden”, “Sora”] 

They also let us ask about for Jayden’s ancestors: 

Ancestor[“Jayden”, x] 

Or Sora’s descendants: 

Ancestor[x, “Sora”] 

Or all ancestor/descendant pairs: 

Ancestor[x, y] 

Using the same pair of rules. 

PRIMITIVE PREDICATES 

Not all predicates are defined in terms of rules.  You can also specify C# code to run when a predicate is run.  These 

are called primitive predicates. You can use these to interface to the native data structures of your game.  We’ll 

talk about how to write these later. 

DECLARATIVE SEMANTICS: HOW YOU SHOULD PRETEND TELL CODE IS EXECUTED  

Here’s one way to define a logic programming language like TELL: a TELL query is “true” if there’s a set of values for 

its variables that make it true given the rules you’ve provided.  This definition says nothing about how the system 

finds those values, and in many ways that’s the point of using a language like TELL.  On a good day, you give it a 

bunch of true statements, you then ask it questions about other statements, and it’s TELL’s problem to worry 



about how to answer them.  That’s what it means for a language to be declarative, and this definition of the 

meaning of a TELL program is called its declarative semantics. 

DECLARATIVE VS PROCEDURAL SEMATNICS  

Of course, in practice TELL uses a very specific algorithm to try to find those values.  Moreover, it’s an incomplete 

algorithm, meaning it can miss solutions.  In practice, programmers working with languages like TELL and Prolog 

often have to design around the algorithm’s its blind spots.  That is, they have to keep the language’s procedural 

semantics in mind while programming.  The procedural semantics infect the declarative semantics, so to speak.  

And, in fact, you can even use your knowledge of the algorithm to trick TELL into running loops or forcing it to do 

things in a specific order.  Sometimes you just have to do that to make it work.  But even when you do, it’s a really 

bad idea to design it so that the people calling your code have to think about how it works internally.  If they do, 

then you should probably be writing that part of your code in C# rather than TELL.   

PROCEDURAL SEMANTICS: HOW TELL CODE IS ACTUALLY EXECUTED 

Okay, so what’s the real algorithm?  Here’s the simple version: 

• Predicates are like procedures 

• Rules are like methods for a procedure 

• A query to test the truth of a predicate with arguments is a call to that predicate/procedure 

• When a predicate is called, the system tries each rule (method) for the predicate, in the order they were 

declared, until one works 

• When it tries a rule, it recursively tries to prove each of the calls in the If() part, from left to right 

• As it goes through this process, it accumulates values for the different variables. 

GOALS, RULES, AND SUBGOALS 

From here on it, will be useful to refer to predicate calls as goals, because that’s ultimately what they are: they’re 

things the system is attempting to prove true.  It tries to prove them by matching them to rules.  In the rule: 

Ancestor[x,y].If(Parent[x,z], Ancestor[z,y]); 

the left-hand side of it, Ancestor[x,y], is called the head of the rule.  And the right-hand side, Parent[x,z], 

Ancestor[z,y], is called the body.  The body calls are subgoals to prove when we try to use this rule to prove 

the head.  When we call Ancestor[“Jayden”, w], it matches the goal, Ancestor[“Jayden”, w], with the 

head, Ancestor[x,y], to determine that the rule’s x variable must be “Jayden”, and the rule’s y variable must be 

the same as the goal’s w variable: 

x=“Jayden” 

z=w 

It can then substitute that into the rule to get a series of subgoals to try: 

Parent[“Jayden”,z], Ancestor[z,w] 

So now it calls Parent[“Jayden”,z], and suppose Jayden’s mother is Sora.  Then we get back z=Sora, which 

means our subgoals changed into: 



Parent[“Jayden”,”Sora”], Ancestor[“Sora”,w] 

and we’ve already established that the first of these is true.  So then the question is who is an ancestor of Sora?  

We have the rule: 

Ancestor[x,x].Fact(); 

whose head is Ancestor[x,x], and which has no subgoals, meaning it’s true unconditionally.   The system 

matches the subgoal Ancestor[“Sora”,w] against the head Ancestor[x,x].  To make that work, the first 

arguments have to be the same between the two, so: 

 x=”Sora” 

but the second arguments have to be the same as well: 

 x=w 

But these together mean that w=”Sora”, which answers our original Ancestor[“Jayden”, w], goal; we know 

w=”Sora”, i.e. “Sora is one of Jayden’s ancestors,” which is correct. 

That’s a basic overview of how it works.  In a sense, it’s very similar to the normal call-and-return structure of a 

normal programming language.  But there are a couple of things that are very different that are worth discussing in 

a little more detail. 

LOGIC VARIABLES AND PATTERN MATCHING 

TELL’s variables behave differently than C# variables.  C# variables are ultimately just a place in memory to store a 

value, and that place always has a value one way or another.  You might be able to set it to null, but that’s just 

another value. 

TELL variables, known in programming languages as logic variables, start out with unknown values.  Then, as we 

saw, the process of matching goals and heads of rules causes the system to learn that particular variables must 

have particular values, or that pairs of variables must have the same values: 

x=“Jayden” 

z=w 

These are called variable bindings.  TELL’s variables always begin in an “unbound” state, meaning they haven’t yet 

been given a value.  Then, during the execution process, they generally acquire values through bindings found by 

matching.  Once a variable is bound to a specific value, any further matching uses that value; it can’t “reset” the 

value of the variable.   

So conceptually, logic variables are “write once.”  And when you’re reasoning about your code, that should be how 

you think about it.  Under the hood, it’s a little more complicated; bindings do get abandoned during execution, so 

let’s talk about that now. 

NONDETERMINISM 



There are a number of points where TELL has to make choices.  When you call a predicate, it must guess what rule 

to use for the predicate.  But that rule may call other predicates, and it has to guess what rule to use for each of 

those.  So executing a query typically results in a tree of possible choices. 

TELL is a “nondeterministic” language, meaning that you can pretend it always guesses correctly: it always chooses 

a path through the choice tree that “works,” provided there is one. 

In reality, it’s trying things and giving up when they fail, and then trying something different; it searches the tree of 

possible choices.3  But when it gives up on an attempt, it removes all traces of the attempt, other than to 

remember that path failed.  In particular, when it gives up on a rule, it throws away any variable bindings accrued 

during the execution of the rule.  The variables are returned to their states before the rule. 

In the end, the system looks as if it had made all the right guesses all along; only the bindings from the successful 

execution path remain. 

CALLING, FAILING, AND RETRYING 

We’ve just slipped two concepts in the backdoor here that don’t typically appear in normal languages: failure and 

retrying.  What happens if a goal can’t match any rules, or we’ve gone through all the rules already?  That goal 

fails: it forces the system to choose another path through the tree of choices.  Let’s look at an example: 

IsA[“Fred”, “cat”].Fact(); 

IsA[“Gerry”, “cat”].Fact(); 

IsA[“Sally”, “cat”].Fact(); 

IsA[“Fido”, “dog”].Fact(); 

IsA[“Joan”, “dog”].Fact(); 

 

Color[“Fred”, “grey”].Fact(); 

Color[“Fido”, “brown”].Fact(); 

Color[“Gerry”, “brown”].Fact(); 

Remember that .Fact() means a rule with no subgoals.  Suppose we want to find a brown cat: 

IsA[x, “cat”], Color[x, “brown”]; 

The solution to this is x=”Gerry”, and you demonstrate that using the two rules in yellow.  To produce the illusion 

that it guessed the right rules all along, TELL, tries the rules one at a time.  TELL starts with no variable bindings, 

and tries the first goal, IsA[x, “cat”].  It matches the goal against the first IsA rule.  They match, yielding the 

binding: 

x=“Fred” 

Now it tries, the second goal, Color[x, “brown”], except x=“Fred” so the goal is really Color[“Fred”, 

“brown”].  It tries to match that against all the Color rules, but none of them match; we say the goal 

Color[“Fred”, “brown”] fails. 

 
3 It uses a depth-first search, in case you were wondering. 



Now the system needs to find a different solution to the first goal, IsA[x, “cat”] because its first solution 

didn’t work for the second goal.  When a goal fails, it “retries” the goal before.  IsA undoes the binding x=“Fred” 

that it found from the first rule, and picks up with the next rule.  That matches with the binding: 

x=“Gerry” 

Now the IsA call has succeed for a second time.  We then try the Color[x, “brown”] goal again, but now it’s 

really Color[“Gerry”, “brown”].  Color tries to match that goal against its rules.  It doesn’t match the first 

two, but it matches the last one.  So now the second goal has also succeeded, and we have a solution: x=“Gerry”. 

BACKTRACKING CONTROL STRUCTURE  

So now you have the basic execution algorithm.  It moves through rules in order, trying each one.  Within a rule, it 

tries each subgoal, in order.  As it tries things, it accumulates bindings, causing variables to go from unbound to 

bound.  Once bound, variables don’t change their value unless some kind of failure retracts the binding. 

This structure of moving forward when you succeed and backward when you fail, with one subgoal potentially 

succeeding many times, is called backtracking.  In particular, the process of backing up to a previous goal, and 

throwing away some bindings is called backtracking. 

PREDICATES AS ITERATORS 

Note: if you don’t know about coroutines and/or you find this confusing just skip over it. 

Backtrackable calls behave like coroutine iterators in C# (the stuff where you return IEnumerable using yield 

return).  Like an iterator, a goal can generate multiple return values, but can also say “sorry, I don’t have 

anything.”  An easy way to implement a language like TELL would be to have goals effectively be iterators that take 

in a set of bindings and return a coroutine that generates new sets of bindings, one for each new solution.  Then 

we could write a query as something like this: 

Bindings FindBrownCat(Bindings originalBindings) { 

   foreach (var newBindings in IsA[x, “cat”].Solve(originalBindings)) 

      foreach (var finalBindings in Color[x, “brown”].Solve(newBindings); 

         return finalBindings; 

} 

We have some datatype, Bindings, that somehow represents a set of variable bindings.  FindBrownCat takes a 

set of bindings currently in effect and gives us a new set of bindings that includes a binding for x.  Or if we want to 

find all the cats, we can do: 

IEnumerable<Bindings> FindBrownCats(Bindings originalBindings) { 

   foreach (var newBindings in IsA[x, “cat”].Solve(originalBindings)) 

      foreach (var finalBindings in Color[x, “brown”].Solve(newBindings); 

         yield return finalBindings; 

} 

For a number of reasons, primarily debuggability, TELL doesn’t use this implementation strategy (although 

UnityProlog and YieldProlog use variants of it).  But it’s nice because it explains backtracking in terms of more 

conventional control structures available in languages like C# and python. 



HOW TO WRITE TELL CODE IN C# 

TELL is an “embedded” language.  TELL code is written in the form of C# code that happens to call into the TELL 

library to make predicates, add rules to them, and call them.  We’ve taken pains to let TELL code look as natural as 

possible inside other C# code, but we’re limited by what kinds of overloading C# allows.  For example, predicates 

are called using square brackets rather than parentheses because C# lets you overload the former but not the 

latter. 

ADDING TELL TO YOUR GAME  

To use TELL in a Unity game, either add TELL.DLL to your Assets folder, or copy the source files into it.  The former 

will let compilation run faster, the latter will let the debugger step through the TELL interpreter if you want to. 

Having added TELL to your project, just add: 

 using static TELL.Language; 

to any .cs files that use TELL. 

STRONG TYPING 

Like C#, TELL predicates and variables are typed.  So Var<int> is the type of a TELL variable whose value is an 

integer, while Var<string> the type of one that is a string.  Predicate<int> is the type of a one-argument 

predicate whose argument is an integer, Predicate<int,string> the type of a two-argument predicate that 

takes an integer and a string.  We’ve taken pains to shield you from having to explicitly declare types any more 

than necessary.   

MAKING VARIABLES 

The main exception is when you create TELL variables.  You generally can’t ignore explicitly specifying a type for 

those.  But all you have to specify is a type and a name: 

new Var<type>("name") 

The name is there so that if you get an exception at run-time you can poke around in the stack and see that it’s the 

float variable x and not some other float variable.   

Of course, it’s a little confusing to use new to make a variable.  But TELL’s variables can’t be C# variables; they need 

to be C# objects so that you can use them to build rules at run-time that get stored inside the interpreter.  

Nevertheless, you still need to store one in a C# variable so you can use it in your C# code, so what you really want 

to say to declare a variable is: 

var name = new Var<type>("name"); 

This is rather cumbersome, but you can abbreviate it to: 

var name = (Var<type>)"name"; 

which saves some typing.  So your TELL program might begin with a bunch of declarations such as: 



var person = (Var<Person>)"person"; 

var name = (Var<string>)"name"; 

var age = (Var<int>)"age"; 

var location = (Var<Vector3>)"location"; 

and so on.  The bad news is that this is the least cumbersome way we were able to make variable declarations 

work.  The good news is that once you make one of these variables, you can use it in as many rules and queries as 

you want; variables just represent local names within a rule or goal, so they don’t get confused between rules. 

MAKING PREDICATES 

Predicates are also C# objects.  So after you create one, you’ll also want to store it in a variable.  As we said, they’re 

strongly typed, so they know what type to expect for each argument.  Fortunately, you can usually avoid explicitly 

specifying the type of a predicate when you create it.  To create a predicate, just say: 

var name = Predicate("name", argument-vars …); 

You provide TELL variables to represent its arguments.  Since these are TELL variables you already created, this lets 

the system infer the type of the predicate from the types of the arguments.  So if, for example, we wanted to 

define a predicate that was true when a particular NPC had a particular name, we might say: 

var Name = Predicate("Name", person, name); 

Since it already knows that person is a variable of type Person and name is of type string, it then knows that 

the predicate Name is of type Predicate<Person,string>, i.e. a predicate that takes a Person and a string 

as arguments.  If we defined appropriate rules for this predicate, then we can do things like call it with a variable 

for the second argument to ask it to solve for the name of a particular person, or to call it with a variable for the 

first argument to solve for what person has a given name. 

CALLING PREDICATES 

You make a goal by applying the [] operator to a predicate: 

• Name[person, “Fred”] 

• Age[person, age] 

• Age[person, 10] 

Making a goal doesn’t call the goal.  It makes a data structure representing the call. You can place it in a rule, in 

which case it will be called if/when the rule is used, or you can call it immediately from C# by calling one of several 

different methods on goals: 

• goal                                      (e.g. if (goal) …) 

Runs goal and returns true if it succeeds, false if it fails.  This is just an implicit type conversion rule from 

Goal to bool that runs IsTrue. 

• goal.IsTrue() 

Run it and return true if it succeeds, false if it fails. 

• goal.IsFalse() 

Same, but with the return value reversed. 



• goal.SolveFor(variable) 

Run it, and return the value of variable from the resulting solution.  Variable must appear in the goal 

itself.  If variable is unbound in the solution or the goal fails, this will throw an exception. 

• goal.SolveForAll(variable) 

Same, but it finds all solutions and returns a list of the values for each solution. 

• goal.Solutions 

Returns a list of tuples of the values of the arguments from goal in each solution.  If goal has one 

argument, it will return a list of that argument.  If it has two arguments, it will be a list of tuples with the 

values of each argument in each solution.  And so on. 

WHAT IS A TERM<T>? 

Note: you can safely skip this, but since you’re likely to see the type Term<T> appear in popups in your code 

editor, we’ll explain it here in case you’re wondering. 

In logic, the arguments to predicates are called “terms” and they’re either constants, variables, things called 

function expressions, which TELL doesn’t support (use Prolog for that). 

TELL is ultimately an interpreter and so it stores what amounts to a parse tree for your program.  When you call a 

predicate using the [] operator, it creates an object of type Goal, which is effectively the parse tree of the call.  

That’s why TELL variables have to be objects in C# - they’re the things that literally get stored in the parse tree. 

Say we have a predicate, P, which is of type Predicate<int>, meaning it takes one argument and that one 

argument should be an int.  That means we want to be able to pass it an actual int, or a TELL variable that’s an 

int TELL variable.  C# doesn’t let you declare the type of an argument to be “int or Var<int>”.  So we deal with 

this by making the actual argument type for the predicate be Term<int>, which has two subclasses, Var<int> 

and Constant<int>.  You’ve never had a reason to see the Constant<T> type here because there’s an implicit 

type conversion rule that says that if you pass a T into something that wants a Term<T>, then the compiler can 

quietly replace the T value with new Constant<T>(the original value).  A Constant<T> object is just a wrapper 

for the original object to let the interpreter see in the parse tree that it’s a constant rather than a variable and 

what that constant value is. 

So for most purposes, you can ignore the distinction between Term<T>, Constant<T>, and just T.  But if you see 

the Term or Term<T> type show up in documentation, now you know why it’s there rather than just T. 

ADDING RULES 

As we said before, you can add a rule to a predicate by saying:4 

predicate[args…].If(subgoals …); 

That’s all you need to know.  However, there are a couple of quality-of-life features that can aid readability: 

• predicate[args…].Fact(); 

Equivalent to an If() with no subgoals.  This just looks a little less weird than predicate[args…].If(); 

 
4 Technically, this is calling predicate to get a Goal, then calling the Goal’s If() method, which tells the goal to 
make a new, internal Rule object that has the goal as its head and the subgoals as its body, then add that Rule 
object to the original predicate. 



• Predicate("name", argVariables…).If(subgoals); 

You can combine the creation of the predicate and the addition of the rule into one expression if the head 

of the rule was going to use the argVariables anyway. 

READING RULES FROM A CSV FILE  

You can also load facts (rules without subgoals) from a CSV file using the LoadCSV(string path) method of the 

predicate, e.g.: 

var People = Predicate("People", name, age).LoadCSV("people.csv"); 

The CSV file should have as many columns as the predicate takes arguments.  It should also have a header row 

with column names that match the names of the variables passed into the constructor for predicate (case is 

ignored).  So in the example above, it would need to have a header row that read: Name,Age or name,age.   

The cells in the CSV will be converted from string form based on the declared types of their respective arguments 

in the predicate.  However, if the cell is the fixed string “_”, then it will be read as a wildcard (a variable) and 

provide a rule that matches for any value of that argument. 

The built-in system parses the types: string, int, uint, double, float, bool, and enumerated types.  If 

these aren’t enough, you can define custom converters for your own types using: 

TELL.Interpreter.CsvReader.DeclareParser(Type t, Func<string, object> parser); 

This needs to be run before it will take effect in a call to LoadCSV(). 

PASSING DATA FROM YOUR GAME INTO TELL 

The point of embedding TELL in C# is to make it easy for it to interoperate cleanly with native game code written in 

C#.  You’ll do that in two main ways: by passing game data into the predicate calls, and by making new primitive 

predicates that call directly into your game code. 

PASSING GAME DATA TO PREDICATES 

The arguments to a predicate in a goal can be any C# expression you like, so long as it’s of the right type.  So you 

can pass in data from your game however you see fit.  If it’s a TELL variable (type Var<T>), it will treat it as a 

variable it needs to find a value for.  If it’s any other value, it treats it as a constant: that specific data object is the 

argument to the predicate.  Suppose we have our TELL variables from above, which I’ll put in boldface: 

var person = (Var<Person>)"person"; 

var age = (Var<int>)"age"; 

And suppose we also have a plain, old C# variable, which I’ll put in italics: 

Person player = Person.Player;  // Assumes this returns a Person object 

string str = "John Doe"; 

Then this is what each of these calls mean: 



• Age[person, 29].SolveFor(person) 

Find me a character who is 29 years old. 

• Age[player, 29]  

Is the Person object stored in the player variable 29 years old? 

• Age[player, 10].SolveFor(player) 

Won’t compile: player is of type Person, not Var<Person>. 

• Age[player, age].SolveFor(age) 

Get me the age of the player character. 

So there’s a difference between passing in the value of a normal C# variable and passing in one that happens to 

hold a TELL variable.  In the former case, the variable is holding a Person object and so that gets treated by the 

call as a constant.  In the latter case, it holds a Var<Person> and so gets treated as something that can be bound 

in pattern matching and solved for. 

Important: if you include Age[player, 29] in a rule, then you are hard-coding the value of player at the time 

the rule is defined.  You are not asking it to look up the value of player anew each time the rule is called.  To 

write something that looks up a value every time it’s called, use a primitive predicate.  To learn to do that, read on. 

DEFINING PRIMTIVE PREDICATES  

A primitive predicate is defined directly in C# rather than through rules.  You provide a delegate (C# method) and 

each time the predicate is called, the predicate calls the delegate and the delegate defines what to do.  The true 

delegate type used inside the interpreter is called TELL.Interpreter.Prover.PredicateImplementation 

and requires the programmer to understanding structure of the interpreter.  So we don’t recommend using it. 

We’ve provided a set of wrappers you can use to handle the common cases that most people want to use in their 

games.   

Important: TELL predicates defined by rules can be called with an input that is an unbound variable (i.e. that hasn’t 

yet been determined).  However, C# functions don’t generally understand this.  So primitive predicates generally 

throw exceptions if you call them with unbound variables for the C# function’s inputs. 

SIMPLE TESTS 

If you want to expose a Boolean test from your code to TELL, use the SimpleTest type: 

var name = Predicate("name", (SimpleTest<T1, …, Tn>)((args…) -> Boolean)); 

This makes a predicate that takes the specified number of arguments of the specified types, and calls the specified 

delegate with the values passed in the call.  It succeeds if the delegate returns true, and fails if it returns false.  It 

throws an exception if any of the inputs are unbound variables. 

For example, we can define a method that tests if an integer is odd by saying: 

var Odd = Predicate("Odd", (SimpleTest<int>) (n -> (n&1)>0)); 

Now let’s say we call Odd[x].  The declarative semantics of this are that this will succeed exactly when x is an odd 

number.  However, the exact runtime behavior as we’ve defined it depends on the binding of the variable x: 

 



x bound to Behavior 

1 or other odd number Call succeeds 

2 or other even number Fall fails 

Nothing (unbound variable) Exception: there’s no value to call the delegate with 

If Odd were a classical logic programming predicate, then calling it with an unbound variable would bind it to an 

odd number, and if we kept retrying it, it would eventually generate every possible odd number.  Since there are a 

lot of odd numbers, this is almost certainly not the behavior we want.  So the wrappers don’t attempt to support 

this.  However, if you want to write predicates that can do this kind of thing, see Mode dispatch,below, for a 

discussion of how to write predicates that can handle both bound and unbound arguments. 

SIMPLE FUNCTIONS 

If you have a conventional C# function that takes inputs and returns a value, you can wrap it in a TELL predicate 

that takes the inputs as its first arguments and returns the output as its last: 

var name = Predicate("name", (args…) -> value); 

For example, if the native Person class in our game has a Name field, we could write an accessor for it as a TELL 

predicate by saying: 

var Name = Predicate("Name", (Person p) -> p.Name); 

Now say we call Name[person, name].  We should think of this as having the semantics that it succeeds exactly 

when person is a person and name is their name.  However, the exact runtime behavior depends on the binding 

states of its inputs: 

Person bound to Name bound to Adds binding for name? Succeeds or fails? 

Person object Unbound Yes; to person’s name Succeed 

Person object That Person’s name No Succeed 

Person object Any other string No Fail 

Unbound Doesn’t matter No Exception 

Again, this blows up if its first argument is unbound because then there’s nothing to pass to the delegate.  See 

Mode dispatch for a discussion of how to write predicates that can handle both bound and unbound arguments. 

ENUMERATORS 

Now suppose that a Person, in addition to their name, has a list of aliases.  We could write that using the technique 

above: 

var Aliases = Predicate("Aliases", (Person p) -> p.Aliases); 

Now Aliases is a predicate whose first argument is a person and its second argument is a list of aliases.  That 

forces us to work with the list as an object, and that’s usually inconvenient in logic programming. 

It’s generally more useful to have a predicate called Alias (singular) whose second argument is a single string (a 

single alias), and that is true if that specified person has that specified alias.  We can do that by saying: 

var Alias = Predicate("Alias", 

                      (Enumerator<Person,String>)((Person p) -> p.Aliases)); 



Now if we call Alias[person, name], it should work whenever name is one of person’s aliases.  It’s exact 

runtime behavior is: 

Person bound to Name bound to Adds binding for name? Succeeds or fails? 

Person object Unbound Yes; to person’s first alias. 
Retries generate successive 
aliases 

Succeed 

Person object One of the person’s aliases No Succeed 

Person object A string that isn’t one of their aliases No Fail 

Unbound Doesn’t matter No Exception 

If we call it with a person and an unbound variable, it will bind the variable to the first alias, and continue.  If we 

later fail and retry the call to Alias, we get the next alias.  If need be, it will succeed once for each possible alias. 

Again, this throws an exception if the first argument is unbound.  To write something that works with all possible 

inputs, see Mode dispatch. 

MODE DISPATCH 

C# functions are written to expect a particular pattern of inputs and generate a single output.  To adapt this to the 

more general system supported by logic programming systems, we need to dynamically select different C# 

functions based on what arguments are bound (inputs) and what arguments are unbound (outputs).  As we said, 

you can provide an implementation delegate for a primitive predicate that can access the interpreter data 

structures directly and do whatever it wants.  But that’s a pain at the best of times and it also requires learning the 

internals of the interpreter. 

To keep you from having to learn the internals of the interpreter, we’ve provided you with a function called 

ModeDispatch that takes separate C# functions for each possible configuration of bound and unbound for each 

input and returns an implementation delegate that will choose the right one to run at runtime.  The problem with 

this is that for 𝑛 inputs, there are 2𝑛 different cases.  So we currently only support 1- and 2-argument predicates.  

This is mostly just because I don’t expect anyone to actually want to write all 8 necessary C# functions for a 3-

argument predicate.  But if someone really wants that, it’s easy enough for me to write the 3-argument or even 

the 4-argument case. 

DEFINING A COMPLETELY GENERAL 1-ARGUMENT PREDICATE 

To write a 1-argument predicate that that can both test (take a bound argument) and generate (take an unbound 

argument) you need to specify both a function for testing and a function for generating: 

var name = Predicate<T>("name", 

                        ModeDispatch<T>(Func<T, bool> tester,  

                                        Func<IEnumerable<T>> generator); 

You fill in name, T, tester, and generator.  In most cases, the compiler will be smart enough to infer T, but I’m 

including all the type annotations here to be clear. 

If the resulting predicate is called with a value (i.e. a constant or a bound variable), then it will call tester with that 

value.  Tester takes a T and returns a bool.  The predicate will succeed if the bool is true, and fail otherwise. 

If the predicate is called with an unbound variable, then it runs generator instead.  Generator takes no inputs and 

returns an IEnumerable<T>.   The predicate will bind its argument to the first element of the enumerable and 



succeed (continue).  If it’s forced to retry, it will move on to the next element and succeed again, until it runs out of 

elements in the enumerable. 

Here’s a common example.  You have some built-in data type and you want to define it as a predicate.  For 

example, suppose you’re writing a Unity game, and the game has a component called NPC.  You can write a 

predicate called Character (I won’t call it NPC to avoid name collisions) like this: 

var Character = Predicate<Component>("character", 

           ModeDispatch<Component>(c => c is NPC,  

                                   () => UnityObject.GetObjectsOfType<NPC>()); 

If you call this with a component, it tests whether it’s an NPC.  If you call it with an unbound variable, it sets it to an 

NPC and lets you enumerate all NPCs if you backtrack.  Note we could also have written this as taking NPC as its 

argument type, but then it’s not possible to call it with a non-character, obviating the need to handle both testing 

and generating. 

DEFINING A COMPLETELY GENERAL 2-ARGUMENT PREDICATE 

Two argument predicates work the same way, we just need to specify four different C# functions rather than 2: 

var name = Predicate<T1,T2>("name", 

                        ModeDispatch<T1,T2>(Func<T1, T2, bool> tester,  

                                           Func<T1, IEnumerable<T2>> generator2, 

                                           Func<T2, IEnumerable<T1>> generator1, 

                                           Func<IEnumerable<(T1, T2)>> generator); 

The first gets called when both arguments are specified (bound), the second when only the first is specified (and it 

generates possible values for the second), the third when only the second is specified (and it generates possible 

values for the first), and the last is for when no inputs are specified, and it generates all possible pairs of values for 

the two arguments.  You can specify null for any of these, in which case the predicate will throw an exception 

should that unhandled binding pattern come up at runtime. 

Here’s how we would write a completely general version of the Alias predicate: 

Var Alias = Predicate<Person,string>("Alias", 

             ModeDispatch<Person,string>( 

               // Does this person have this alias? 

               (person, name) => person.Aliases.Contains(name), 

               // What are the aliases of this person? 

               person => person.Aliases, 

               // What persons have this alias? 

               name => Person.AllPersons.Where(p => p.Aliases.Contains(name)), 

               // Give me every (person,alias) pair. 

               () => Person.AllPersons.SelectMany( 

                                        p => p.Aliases.Select(a => (p, a))))); 

BUILT-IN PREDICATES 

The following primitive predicates are built into the system.  They’re defined in the static class TELL.Language. 



Note:  

• The type Term<T> can effectively be considered to be the type T. 

• Generic predicates are called with () rather than [] because of idiosyncrasies of C#. 

COMPARISONS 

• Same<T>(Term<T> x, Term<T> y) 
x == y 
True if the two arguments are equal.  However in logic programming, this really means “true if you can 

match them”, which means that if one of them is unbound, it will make them be the same by binding 

them together, and then succeed since they’re the same now. 

• Different<T>(Term<T> x, Term<T> y) 
x != y 
True if the two arguments are not equal.  However in logic programming, this really means “true if you 

cannot match them”, which means that if one of them is unbound, it will make them be the same by 

binding them together, and then fail, because they’re not different anymore. 

 

DEBUGGING 

• Break<T>(Term<T> arg) 

Forces your game to enter the debugger.  You will then be able to see where you are in execution by 

inspecting the C# stack, and look at the value of arg. 

HIGHER-ORDER PREDICATES 

Higher-order predicates are ones that take goals as arguments and run them for you. 

• Not[Goal g] 

!g 

True if g is false, false if it’s true.  In other words, it runs g and fails if g succeeds and vice-versa. 

• [And goal …] 

True if all goals are true.  This is an unusual predicate in that it takes a variable number of arguments. 

• Once[Goal g] 

True if g is true, but only generates the first solution to g.  It will fail if you attempt to retry it. 

AGGREGATE PREDICATES 

• Sum[Var<float> sumValue, Goal generator, Var<float> totalValue] 

True if totalValue is the sum of value of sumValue across all solutions to generator.  For example, 

Sum[m, Member(m, list), total] would set  total to the sum of all the elements of list. 

 

• Min[Var<float> value, Goal generator] 

True if value is the smallest of value it takes across all solutions to generator.  For example, 

Min[m, Member(m, list)] would set m to the smallest element of list. 

 



• Max[Var<float> value, Goal generator] 

True if value is the largest of value it  takes across all solutions to generator.  For example, 

Min[m, Member(m, list)] would set m to the smallest element of list. 

 

• Minimal<T>(Var<T> arg, Var<float> utility, Goal g) 
Finds the value of arg that minimizes utility, from all solutions to the goal.  In other words, it finds all 

solutions to the goal, remembers the values of utility and arg for the one with the lowest value of 

utility. 

 

• Maximal<T>(Var<T> arg, Var<float> utility, Goal g) 
Finds the value of arg that maximizes utility, from all solutions to the goal.  In other words, it finds all 

solutions to the goal, remembers the values of utility and arg for the one with the highest value of 

utility. 

“META-LOGICAL” PREDICATES  

Meta-local is a terrible name, but it’s the standard one.  These are predicates that let you inspect the state of the 

interpreter.  In particular to ask if a variable is bound.  You need that sometimes, for example to bullet-proof code 

that will loop infinitely if called with an unbound variable. 

• Unbound<T>(Term<T> arg)  

True if arg is a variable that is still unbound at the time of the call. 

• Bound<T>(Term<T> arg)  

True if arg is not a variable or if is a variable bound to a value at the time of the call. 

OTHER 

• Member<T>(Term<T> element, Term<IList<T>> list) 

True if element is a member of list.  List must be bound, but element can either be bound, in which case 

Member will test membership in the list, or unbound, in which case it will generate elements of the list. 

COMMON PROBLEMS WITH LOGIC PROGRAMS 

The most common bugs in logic programs fall into a few categories.  Many are just literally bugs in the 

programmer’s logic: edge cases, and the like.  These aren’t the language’s fault.  But there are also bugs that are 

due to the difference between the declarative semantics that these languages aspire to and the procedural 

semantics they actually have.  Here are the most common ones. 

ORDER OF RULES MATTERS  

TELL tries your rules one at a time, in order.  That means, for example, that if you write a recursion, the rule for the 

base case needs to come first.  The predicate we discussed earlier: 

Ancestor[x,x].Fact(); 

Ancestor[x,y].If(Parent[x,z], Ancestor[z,y]); 

works.  But if we reverse the order of the rules: 



Ancestor[x,y].If(Parent[x,z], Ancestor[z,y]); 

Ancestor[x,x].Fact(); 

We can get an infinite recursion, because it will always start by trying the recursive case, which will itself start with 

the recursive case, and so on, never getting to the base case.  This won’t always generate an infinite recursion, but 

if you call it with both arguments unbound it will recurse infinitely because the arguments are still unbound when 

it gets to the recursive call.  That means the recursive call is effectively solving the same problem as the original 

call, and the system will keep reducing the current problem to another one that’s basically the same problem. 

The general rule of thumb is to put recursive rules at the end. 

ORDER OF SUBGOAL MATTERS 

Within a rule, TELL always executes subgoals left-to-right.  That leads to a couple of problems.   

INFINITE RECURSION 

Again, the definition of ancestor that works: 

Ancestor[x,x].Fact(); 

Ancestor[x,y].If(Parent[x,z], Ancestor[z,y]); 

depends on the recursive rule calling Parent first to get a specific value of z to consider and only then recursing.  

If we reverse these: 

Ancestor[x,x].Fact(); 

Ancestor[x,y].If(Ancestor[z,y], Parent[x,z]); 

We start with the recursive subgoal Ancestor[z,y] which, since z is unbound at that point in time, will look for 

any node that has y as an ancestor.  That might actually work.  However, suppose we started with both x and y 

unbound.  Then we’re asking “find me something that is an ancestor of something else.”  Good so far.  But now the 

recursive call is with another unbound variable, z, and so we’re again effectively asking “bind me something that is 

an ancestor of something else,” meaning we’ve reduced a problem to itself, and will fall into an infinite recursion. 

The general rule of thumb is to put recursive calls at the end of your rules. 

CALLING PRIMITIVES WITH UNBOUND VARIABLES  

Not all primitives can handle unbound arguments, and those that can usually can’t handle arbitrary unbound 

arguments.  For example, the Odd primitive that we defined earlier only works when you give it a specific number 

to test for oddness.  That means, if we for some reason want to find a person whose age is an odd number: 

Person(person), Age(person, age), Odd(age) 

The query will work because by the time we call Odd, age has been filed in by the call to Age.  But if we reverse 

the order of the last two subgoals: 

Person[person], Odd[age], Age[person, age] 

Then we’ll get an exception because age doesn’t have a value by the time Odd is called. 



EXTRANEOUS SOLUTIONS 

Suppose you have a rule like this: 

 FavoriteFood[person, "pizza"].Fact(); 

i.e. “everybody’s favorite food is pizza.”  Now suppose you add vampires to your game, and so you change this to: 

FavoriteFood[person, "blood"].If(Vampire[person]); 

FavoriteFood[person, "pizza"].Fact(); 

This is a common coding idiom.  You have a rule that expresses a general default at the end and then rules for 

exceptions and special cases before it.  Since it runs the rules in order, it will check the vampire rule first.  This code 

is correct in the sense that if you ask it what a vampire’s favorite food is: 

 FavoriteFood["Dracula", food].SolveFor(food) 

It will return food=“blood”.  And for most purposes, this is good enough.  However, technically, the rules say that 

both blood and pizza are Dracula’s favorite foods; FavoriteFood["Dracula", "pizza"] will return true.  If 

you want the rules to get that right, then you have to say: 

FavoriteFood[person, "blood"].If(Vampire[person]); 

FavoriteFood[person, "pizza"].If(!Vampire[person]); 

NOT IS WONKY FOR GOALS WITH UNBOUND VARIABLES  

The semantics of !goal (aka Not[goal]) are that it succeeds (is true) if goal is false (fails) and it’s false (fails) if goal 

is true (succeeds).  It just literally runs goal to see if it can get a solution.  If it can, it throws that solution away and 

fails.  If goal fails, then ! returns without binding any new variables. 

This behaves pretty normally if goal doesn’t have any unbound variables.  If we run !Parent["Jayden", 

"Sora"], then it runs Parent["Jayden", "Sora"].  Let’s say that’s true and it succeeds.  Then that means ! 

fails.  But if we run !Parent["Jayden", "Jayden"], then it runs Parent["Jayden", "Jayden"].  That 

fails, since no one is their own parent.  And so that means ! succeeds. 

But things are more complicated if we say !Parent["Jayden", x].  If x is already bound to some person, then 

this behaves like the example before.  But if it’s unbound, we might expect it to mean “tell me an x who isn’t 

Jayden’s parent.”  But it doesn’t mean that; it means “run Parent["Jayden", x] and tell me if it fails.”  And 

when x is unbound, Parent["Jayden", x] means “find me an x who is Jayden’s parent,” and assuming Jayden 

has a parent, that goal will succeed, which means !Parent["Jayden", x] will fail.  The query 

!Parent["Jayden", x] effectively means “Jayden has no parents     ” 

That might be fine except that, as we said, if x is bound we sort of get different behavior.  And that means that if 

we have two goals, it matters quite a lot, which one comes first.  If we say: 

Person[x], !Parent["Jayden", x] 

Then we really are asking for a person who isn’t Jayden’s parent, since the Person call will bind x before we get to 

the ! call.  But the query with the subgoals reversed: 



!Parent["Jayden", x], Person[x] 

will fail because x starts out unbound and !Parent["Jayden", x] fails when x is unbound. 

The general rule of thumb for using ! is to put your negations at the ends of your rules to make sure everything is 

bound. 

ADDING AN INTERACTIVE COMMAND LINE TO YOUR GAME  

TELL has enough run-time information to convert a string into a query and run it.  This is called a 

Read/Eval/Print/Loop.  However, in order for the REPL to know that “Parent” means the Parent predicate, it has 

to have a list of all of the predicates the user should be able to call.  This is stored in the TELL.Program class.  To 

use the REPL, add: 

var program = new Program("my program"); 

program.Begin(); 

before you start making predicates.  Then call: 

program.End(); 

when you’re done.  Then read a query string from the user and call: 

program.Repl.Solutions(query) 

This will return an IEnumerable<object[]> with the values of the variables of the query for each possible 

solution to the query. 

 

 

 

 

 


